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Abstract—With concerns about data privacy growing in a
connected world, cryptography researchers have focused on fully
homomorphic encryption (FHE) for promising machine learning
as a service solutions. Recent advancements have lowered the
computational cost by several orders of magnitude, but the
latency of fully homomorphic neural networks remains a barrier
to adoption. This work proposes using multi-exit neural networks
(MENNs) to accelerate the FHE inference. MENNs are network
architectures that provide several exit points along the depth of
the network. This approach allows users to employ results from
any exit and terminate the computation early, saving both time
and power. First, this work weighs the latency, communication,
accuracy, and computational resource benefits of running FHE-
based MENN inference. Then, we present the TorMENNt attack
that can exploit the user’s early termination decision to launch the
first-ever concrete side-channel on MENNs. We demonstrate that
the TorMENNt attack can predict the private image classification
output of an image set for both FHE and plaintext threat models.
We discuss possible countermeasures to mitigate the attack and
examine their effectiveness. Finally, we tie the privacy risks with
a cost-benefit analysis to obtain a practical roadmap for FHE-
based MENN adoption.

Index Terms—Fully Homomorphic Encryption, Multi-Exit
Neural Networks, Privacy-Preserving Machine Learning.

I. INTRODUCTION

As the world becomes more connected, cloud services have
become an increasingly popular solution for businesses. In this
paradigm, users send their data to the cloud for processing,
allowing the user to offload the computational cost and uti-
lize the cloud service provider’s proprietary algorithms. For
Machine Learning as a Service (MLaaS), these proprietary
algorithms are trained neural networks, which require lots of
data and processing power to develop. It is not always feasible
for users to train neural networks on specialized datasets,
making MLaaS a prevalent solution [1], [2].

Traditional neural network architectures have grown deeper
as researchers try to obtain higher accuracies. While accuracy
gains improved at first, they reached a wall in recent years.
This means that as neural networks get deeper and deeper,
accuracy gains decrease, and computational costs increase.
Another drawback is that deep neural networks suffer from
the vanishing gradient problem, making it challenging to train
deep networks all at once [3]–[5].

Multi-exit neural networks (MENNs) were introduced to
address these issues. The central concept of MENNs is that

easy-to-process inputs can take preliminary results from an
early exit and terminate the computation quickly. For example,
[4] shows that many ImageNet dataset inputs can have a
good prediction after a few layers and can terminate earlier;
other inputs may need to execute the remaining layers for
further processing to obtain more accurate results. As many
inputs can exit early, MENNs provide the opportunity to
save computation time without large drops of precision. As
an additional benefit, MENNs executed to the end provide
an ensemble of neural network outputs. This ensemble of
multiple exits can be combined to increase the prediction
accuracy beyond a single-exit network [6]–[8], or improve
the confidence score [9]. Finally, MENNs can address the
vanishing gradient problem when implemented as several
cascaded neural networks, trained one by one.

MENNs easily adapt to the machine learning as a service
(MLaaS) paradigm. In this case, users send their data to the
cloud, and the cloud runs the first segment of the network and
additional exit layers to give the user an early result. If the
user is happy with the confidence of the result, they can tell
the cloud to terminate the computation. However, if the result
has low confidence, the user tells the cloud to continue to the
next network segment [10], [11].

Unencrypted MENNs have been exhibited in applications
such as autonomous driving [12] and speech recognition [13].
They can either operate in fast edge computing [14], MLaaS
[10], and low-power computing environments [15]. One
promising, yet unexplored environment of MENNs is fully
homomorphic encryption (FHE)-based privacy-preserving ma-
chine learning (PPML). Single exit FHE-based PPML uses
state-of-the-art encryption techniques to execute computations
on ciphertexts, allowing neural networks to perform inference
on encrypted user data. This paradigm allows the cloud to
maintain full control of its model IP and MLaaS service,
while protecting user data from being revealed to a curious
cloud service provider. The main drawback of FHE-based
PPML is that it is computationally expensive, resulting in large
inference times and high dollar costs for the user. For example,
a nine layer CIFAR-10 network takes 76 minutes to compute
on a 96-CPU core r5.24xlarge AWS server [16]. Due to this
slow computational speed, MENNs are a potential technique
to obtain faster FHE-based PPML inference.



Fig. 1. FHE-MENNs and the TorMENNt Attack: In a multi-exit neural network (MENN), preliminary results can be given back to the user. A user can
decide, based on the confidence score (e.g., entropy) of the preliminary results, whether they wish to terminate the computation early. An attacker can easily
exploit this information to predict the user’s inputs. This attack can affect both a plaintext and an encrypted privacy-preserving cloud model.

This work analyzes the potential of FHE-based MENNs to
save computational cost and latency. As part of this analysis,
we present TorMENNt, a weak side-channel attack on multi-
exit neural networks that enables the attacker to recover the
classification results of the user. TorMENNt is based on the
user inherently leaking information by deciding to terminate
the computation early, as shown in Figure 1. The TorMENNt
attack is applicable to both unencrypted and FHE-based PPML
MENNs.

Overall, our contributions are summarized as follows:

• We analyze the use of MENNs for FHE-based PPML
across a variety of architectures and PPML frameworks;

• We expose TorMENNt, a new side-channel attack that
impacts a broad variety of modern MENNs;

• We demonstrate how MENNs can be adapted for FHE-
based PPML and evaluate the performance gains and the
security risks of several MENN inference schemes.

The rest of the paper is organized as follows: Section II
covers important background information about MENNs and
PPML, while Section III defines the two threat models to be
attacked. Section IV examines the benefits of using FHE-based
MENNs, while Section V defines the theoretical foundations of
the proposed TorMENNt attack and demonstrates its execution
and mitigation strategies. Section VI elaborates on how these
findings can be adapted to real-world applications. Finally,
Section VII presents related works and our concluding remarks
are discussed in Section VIII.

II. BACKGROUND

In this section, we provide the necessary background to
issue the TorMENNt attack. In Section II-A, we first present
an overview of multi-exit network architectures and how they
can be used. Then, in Section II-B, we present an overview
of homomorphic encryption schemes. Finally, in Section II-C,
we present current FHE-based PPML speedup techniques.

Fig. 2. Multi-Exit Early Termination Schemes: A simplified version of the
four early termination schemes, where the users are talking to the cloud.

A. Multi-Exit Learning

1) Overview of Multi-Exit Neural Networks: Multi-Exit
Neural Networks (MENNs) were developed to speed up early
termination in real-time embedded systems, such as video
detection. They are sometimes called by different names,
including early-exit neural networks [17] and cascaded net-
works [4], [18]. The original goal of MENNs was to limit
overthinking, which occurs when deep neural networks are
passed easily classified inputs and process them far longer
than necessary. Early works found that if the neural network
can determine the difference between easy and challenging
inputs, then easily classified inputs can exit early in a smaller
network, whereas challenging inputs can be processed through
additional layers [17], [18]. Other works proved that training
of multi-exit neural networks helps improve overfitting and
mitigates the vanishing gradient problem [4], [19].

2) Multi-Exit Early-Termination Schemes: There are four
main types of early termination schemes to determine which
neural network exit is best to take during inference. These
types of early termination are summarized in Figure 2.

In the budgeted early termination scheme, the user or
system supplies the cutoff constraint for running the neural
network upfront. For example, [15] determines whether to run
the complete neural network based on the remaining battery



life for the embedded device. In contrast, [14] implies a time-
based constraint for its networks, where the system can request
the best result for a predetermined amount of time.

In the anytime early termination scheme, the cloud will
attempt to run the complete network with all possible exits.
The user can interrupt this process early, based on external
constraints, and ask for the results from the most recent exit.
After the first exit is computed, the cloud should always
have a result for the user, and this result has increased the
accuracy of being correct over time [7], [10], [14]. Unlike
the budgeted early termination scheme, the anytime early
termination scheme does not require the budget constraints
to be known upfront.

Next, the input-dependent early termination scheme
outputs a confidence score of how accurate the result is and
lets the user decide if they want higher confidence. The user
can specify they want 90% confidence in their result, and
the network can run until an exit exhibits their confidence
score. Different proxy functions can be used to determine this
confidence score [10], [14], as discussed in the next section.

Lastly, the distributed early termination scheme is similar
to the input-dependent early termination scheme, except one
network is run locally. This scheme uses a shallow neural
network for local computation and a deep neural network
for cloud computation; no data needs to be sent to the
cloud if the user is satisfied with the confidence score after
local computation. The intent is to use this type of early
termination on devices with poor network connections; if the
local computation is accurate, a fast and low-power result
is achieved without needing to wait for a reliable network
connection [11].

Our work is primarily concerned with the input-dependent
early termination scheme, but all FHE-MENN early termina-
tion schemes are discussed in Section VI-A.

3) Confidence Scores: An effective confidence score for
the input-dependent early termination scheme is the subject of
recent works. Many works [3], [6], [17], [18] use an entropy-
based confidence score

Centropy = −
num classes∑

i=1

ci ∗ log ci, (1)

where ci is the softmax output of the i-th class.
A second common confidence score used is a max-min

difference between values [8], [11], [18], [20], [21]. This is
represented as

Cmax−min = max(c0, ..., ci)−min(c0, ..., ci), (2)

and is simplified in some works to just the max function

Cmax ≈ max(c0, ..., ci). (3)

Another option is to use a secondary neural network to
determine entropy [9], [18], and is defined as

CML = σ(f(x)), (4)

where σ() is the sigmoid function, x is an intermediate feature
representation, and f() is a separately trained neural network
confidence predictor function.

B. PPML Schemes

MLaaS is a common application that privacy-preserving
computation looks to solve and has become known as PPML.
Researchers are investigating ways to develop fast, deep, and
private neural networks that require little computational power
and bandwidth from users. An overview of different PPML
encryption schemes and techniques is discussed below.

1) Leveled Homomorphic Encryption: Leveled Homomor-
phic Encryption (LHE) is a cryptographic technique that offers
the ability to perform operations, such as addition and multi-
plication, on a ciphertext. LHE-based encryption schemes rely
on lattice cryptography and the learning with errors (LWE)
problem [22]. Specifically, the LWE problem states that if
small amounts of noise are added to a transformed high-
dimensional value in a lattice, it is NP-hard to reverse the
transformation of the value into a plaintext. This transformed
value is the ciphertext, and its noise is essential to its post-
quantum resilience. However, this noise grows as HE opera-
tions (i.e., addition and multiplication) are performed; once the
noise grows beyond a certain level, the ciphertext cannot be
decrypted correctly with the decryption key. Therefore, LHE
only supports a limited number of operations known as its
multiplicative depth.

For HE-based PPML, the users typically send their data to
the cloud for neural network classification using the cloud’s
own weights, and the cloud returns the computation result. The
user is only involved in the encryption and decryption process,
which is a major benefit for HE-based PPML schemes. LHE-
based schemes support packing of multiple inputs into a single
ciphertext during the encryption process. This allows for vec-
torized computation and high throughput image classification.
Nevertheless, a major drawback of LHE is the multiplicative
depth limits the computation to shallow neural networks,
while supported activation functions can only be expressed
as polynomial approximations.

Popular LHE-based encryption libraries include HELib [23],
which supports the BGV [24] and CKKS [25] encryption
schemes, as well as SEAL [26] that supports the BFV [27]
encryption scheme.

2) Fully Homomorphic Encryption: Fully Homomorphic
Encryption (FHE) is an extension of LHE, adding a process
called bootstrapping to reduce ciphertext noise and allow for
unlimited operations. Notably, bootstrapping is computation-
ally expensive, so its use must be limited as much as possible.
Recent works have added support for programmable boot-
strapping (PBS) [28], or univariate function evaluation during
a bootstrap, and bi-directional bridging between binary and
integer ciphertexts [16]. These two improvements separately
enable fast inference on neural networks.

Popular FHE libraries for PPML include Concrete [29]
and (RED)cuFHE [16], both of which use the TFHE [30]
encryption scheme.



3) Multi-Party Computation: Multi-Party Computation
(MPC) is a cryptographic protocol where different parties work
together on a shared computation. This can be achieved using
secret sharing, garbled circuits [31], and partially homomor-
phic encryption. For MPC-based PPML between two parties,
users typically send their data to the cloud for convolution
using the cloud’s weights, and the cloud sends the data back
to the users for computing activation functions. Notably, this
is a user-centric approach, as users are actively involved in the
computation. MPC solutions also incur higher communication
overheads between users and the cloud. These requirements
can make it infeasible for certain applications, where edge
devices have low computation power or slow network con-
nections.

In MPC-based PPML schemes with secret sharing, the user
data can be divided between two (or more) servers, removing
the user from most of the computation. However, this approach
is based on a somewhat weaker threat model that assumes the
cloud servers can never collude. It is also less practical for an
end-user to contract two non-colluding cloud servers instead of
one. This loss of security and loss of ease of implementation
make this multi-cloud scheme less ideal for high-security
applications. Popular MPC-based PPML solutions include
Cheetah [32], Gazelle [33], and MiniONN [34].

C. Techniques for Efficient PPML in FHE

Privacy-preserving machine learning has different computa-
tional costs than plaintext computation. In general, encrypted
additions are low cost, encrypted multiplications are medium
cost, and encrypted comparisons are high cost. In this work,
we analyze the performance of PPML networks based on
the TFHE encryption scheme. TFHE can efficiently perform
Boolean operations, such as bit shifts and logic gates.

Approximation and discretization can be used to speed up
PPML computation times. There exists two main frameworks
for TFHE-based PPML: REDsec [16] and Concrete [29]. In
this section, we discuss what approximations these frameworks
use to achieve fast FHE-based ML inference.

1) REDsec Optimizations: REDsec obtains its speedups
with a technique called bidirectional bridging, which converts
integer ciphertexts into several binary ciphertexts represented
as encrypted bits {0,1}. This allows implementing efficient
neural networks with ternary weights {−1, 0, +1}. Here,
inputs multiplied by −1 use the univariate NOT gate for
1’s complement and add 1 for 2’s complement later on.
Inputs multiplied by 0 are ignored. Finally, inputs multiplied
by +1 stay as-is. These operations are extremely PPML-
friendly and speed up computation significantly over PPML
multiplications.

REDsec further utilizes binary ciphertexts for non-linear
activation functions. Here, the sign function is used

sign(x) =

{
−1 x < 0

+1 x ≥ 0
(5)

to restrict the convolution layer inputs to ±1, further simplify-
ing computational cost. This reduces binary weight multiplica-

tion to a single XNOR gate. In REDsec this is a special XNOR
gate that takes inputs in {−1,+1} instead of the traditional
{0,+1}, and it can be viewed as a multiplication function.
ReLU is also possible by ANDing the inverse sign bit with
the remaining ciphertext bits [16], [35], [36].

2) Concrete Optimizations: Instead of bidirectional bridg-
ing, Concrete opts to use a technique called programmable
bootstrapping (PBS) for non-linear operations. PBS can be
viewed as an encrypted lookup table, where a multiplexer
circuit can be inserted during a bootstrap operation on a
ciphertext [28].

For multiplication and addition operations, Concrete uses
low-precision TFHE integer ciphertexts, where most networks
cap the resulting ciphertexts to 13-bits to balance speed and
efficiency. For non-linear activation operations, PBS can be
used for a wide range of activations: a PBS lookup table can
handle any univariate function, allowing for discretized ReLU,
hard tanh, and sigmoid to be used [29].

III. THREAT MODEL

A. Definitions

The TorMENNt side-channel attack leaks information about
the user input data based on the MENN exit taken. In order
to model this information leakage, we assume a semantically
secure inference game, defined as follows: Suppose a user
(assuming the role of a challenger) publishes two plaintext
images of identical bitsize, m0 and m1. The user selects a
random bit b, securely encrypts mb as Cb and uploads it
to a cloud service for encrypted processing and classifica-
tion, and ultimately receives an encrypted result R. Then,
an eavesdropping attacker A with the ability to query the
model (either within the cloud service or monitoring the
communication channel) predicts bit b′ = A(m0,m1, Cb, R),
such that ε = |Prob[b′ = b]−0.5|. We say that A wins the SSI
game if and only if ε is non-negligible (i.e., the eavesdropper
can predict bit b with probability better than a random guess).
If A cannot win the SSI game, the system does not leak any
information and is semantically secure.

Anytime a decision is made based on derivatives of input
data mb, an attacker can gain information and break semantic
security. The TorMENNt attack, which will be presented in
Section V, demonstrates that deciding which exit to take will
break the semantic security of MENN systems. This work
further evaluates mitigation techniques in Section V-D, making
it more difficult for adversaries to win the semantic security
game.

B. Privacy Preserving Inference Model

The MLaaS inference model assumes an honest but curious
cloud, identical to most FHE-based PPML works. Here a
user employs FHE to protect their input from a cloud service
provider who owns the neural network model. The cloud
service will run the neural network inference correctly but
will attempt to leak information about the user input (e.g., be
incentivized to use it for advertising purposes).



C. Malicious FHE Cloud
We will also consider a malicious cloud threat model in

our FHE-MENN discussion in Section VI. A malicious cloud
enables the cloud to manipulate data to leak information. For
FHE-based models, a malicious cloud can run an encrypted
test circuit to see if a certain attribute is present. The cloud
can saturate values or use an encrypted multiplexer to send
false values to the user based on the results of the cloud’s
encrypted test.

IV. FHE MENN PERFORMANCE

Due to their large computational complexity constraints,
privacy-preserving machine learning technologies are good
candidates for early exit models. However, despite growing
interest in PPML, the use of privacy-preserving MENNs has
not yet been adopted to the best of our knowledge. This section
discusses the performance benefits of MENNs when applied
to FHE.

A. Network Architectures and Training
For our early exit architectures, we used the Cifar-10 [37]

benchmark, which contains 32×32 RGB images sorted across
10 classes. We also measured performance on TinyImageNet,
which has 64×64 RGB images sorted across 200 classes. We
further adapted several network architectures to incorporate
multi-exits, including BinaryNet [38], [39], VGG [40] and
Resnet [41].

BinaryNet was constructed using REDsec as its foundation.
Exits were inserted every two layers to assess the perfor-
mance of the FHE-MENN. In developing this network, it was
discovered that the default MaxPooling layers in BinaryNet
contributed to significant latency overhead. To address this,
exits were introduced before the MaxPooling operation, al-
lowing for early exits before encountering these high-latency
computations.

Our VGG network was built using Concrete and has a struc-
ture similar to our BinaryNet network. Concrete recommends
SumPooling as no MaxPooling operation is available. Since
SumPooling is more homomorphically friendly in Concrete,
we were able to place the early exits after the pooling layer.
We also opted for fewer exits to achieve lower latency and
higher security (as discussed in Section V). Finally, our ResNet
architecture was also built using Concrete. We placed the
early exits after each residual addition, where they seemed
to naturally fit into the model.

The training process for all architectures followed a two-
step approach, beginning with the initial focus on training
the backbone of the network while disregarding all but the
final exit layers. Then, each exit was individually trained
while the backbone was concurrently fine-tuned. We used the
cross-entropy loss function, which is standard for supervised
learning classification tasks.

B. Selecting an Early Exit Decision Boundary
Figure 3 illustrates the accuracy versus timing outcomes for

our networks. The single-exit networks exhibit fixed architec-
tures featuring only one exit, while multi-exit architectures

TABLE I
NETWORK COMPARISONS: COMPARISON OF PERFORMANCE AND

ATTACK VULNERABILITY OF OUR DIFFERENT NETWORKS. THE FIRST TWO
RESULT COLUMNS SHOW THE CLASSIFICATION ACCURACY AND AVERAGE
TIME FOR A SINGLE IMAGE USING THE BASELINE THRESHOLD. THE NEXT
TWO COLUMNS DEMONSTRATE HOW WELL AN ATTACKER CAN GUESS THE

CLASS OF A USER’S IMAGES BASED ON EXIT DATA. THE LAST COLUMN
REPORTS THE USER ACCURACY DROP AFTER THE ISORECALL MITIGATION.

MENN Avg. Attack Attack Isorecall
Model Dataset Acc.3 Time1 (Single4) (Batch2,4) Acc.3

Binary Cifar 59.3% 1502s 23.5% 47.4% 52.4%
VGG Cifar 76.1% 811s 15.8% 45.8% 73.6%

Resnet Cifar 71.0% 1367s 18.7% 67.3% 65.7%

VGG TImg 56.2% 5018s 1.35% 6.79% 46.1%
Resnet TImg 56.2% 9094s 1.58% 7.53% 44.7%

1 Avg. Times are for a FHE-based PPML implementation, using the base
entropy discussed in Section IV-B.
2 Batch averages attack results of 90-100 pictures per batch for CIFAR10
and 20-25 images per batch for TinyImageNet.
3 Performance Accuracy refers to a user’s classification accuracy, both raw
(MENN Acc) and after the mitigation (Isorecall Acc).
4 Attack Accuracy refers to how frequently an attacker correctly guessed a
user’s image class.

present accuracy and timing results based on entropy and
maximum decision thresholds.

To determine these thresholds in our inference methodology,
we initially used an entropy cost score described in Eq. 1 with
a base threshold of maxentropy/2. This decision boundary
worked well for Cifar10, although was slightly high, with
many images exiting later than needed. Therefore, we reduced
this threshold by 0%, 10%, 20% and 30% for our timing results
in Figure 3.

For Tiny ImageNet, we found that the maximum decision
metric (Eq. 3) performs slightly better than entropy. Based on
our analysis, we observe that with more classes the network
was less able to make confident predictions, and confusion
between a few top classes combined with fluctuations of
lower-ranked irrelevant classes led to noise in the overall
entropy measurements. Instead we used the maximum decision
boundary used a base threshold of 0.25 and modified the values
in Figure 3 to be {0.15, 0.20, 0.25, 0.30}. Contrary to entropy,
a higher maximum threshold means images exit later with
higher accuracy and slower latency.

We also summarize our performance results across different
networks in Table I; for the performance metrics, the base
thresholds were used.

C. FHE-based PPML Performance

In terms of accuracy assessment, REDsec’s plaintext mode
was employed, utilizing discretized weights of {−1, 0,+1}.
For Concrete, the FHE simulation mode was utilized, with
weights and activations discretized to 6 bits. Notably, these
simulation modes are essential when evaluating the accuracy
across thousands of images. Moreover, all timing measure-
ments were conducted on a c5a.24xlarge instance, and the
reported times are averages based on three inference measure-
ments in encrypted mode.

As illustrated in Figure 3, when our selected architectures
operate as single-exit networks, they exhibit longer runtimes



Fig. 3. MENN Performance: Different accuracy-timing trade-offs for PPML networks. For Cifar10 MENNs, we used a base entropy of max entropy/2.
Our initial results showed that the base entropy for Cifar-10 was slightly high, so we evaluated the network three more times reducing this threshold by 10%,
20%, and 30%. For entropy, a lower threshold means later exits, resulting in slower latency but higher accuracy. TinyImagenet used the maximum softmax
output value as its decision boundary, with values {0.15, 0.20, 0.25, 0.30} serving as the thresholds. For maximum, a higher threshold means later exits,
resulting in slower latency but higher accuracy.

Fig. 4. Network Architectures: We utilized three different networks across
two different frameworks. First, we adopted the CIFAR-10 BinaryNet from
REDsec to have multiple exits. Then, for the Concrete library, we adapted a
VGG-style architecture and built a Resnet-style architecture for our experi-
ments. Activation functions (with REDsec employing the sign function and
Concrete using hard tanh) and Batch Norm are implied for each Convolution
and Fully Connected Layer. Exit layers are shown in yellow, where the
backbone of the network skips over the exit layers.
C: Convolution F: Fully Connected PM : MaxPool PS : SumPool
A: ResNet Addition E: Exit

compared to the MENNs with similar accuracy. MENNs
capitalize on the advantage of most images being classified
with an early exit, achieving lower latency without sacrificing
accuracy. Only images with high entropy outputs necessitate
further processing, and these instances propagate through the
network.

It is surprising these trends held up across different architec-
tures and FHE frameworks. The greatest improvement came
from BinaryNet using REDsec, showing about 7% accuracy
improvement for the same latency with using MENNs. This
architecture exited before the expensive MaxPool operation
which plagued the single-exit networks. The Concrete frame-
work had a more efficient SumPool implementation, allowing
single exit networks to run faster. However, MENNs still

achieve an impressive 1-3% accuracy improvement for the
same latency.

Another advantage of MENNs is that the user can pick
their accuracy-latency trade-off by adjusting the threshold.
Thus, if they need results quicker, they can raise the entropy-
based threshold (or lower the maximum-based threshold) to
allow more images to exit early. Conversely, if they want a
higher accuracy for their inference, they can lower the entropy-
base threshold (or raise the maximum-based threshold) to
encourage the image to propagate deeper into the network if
the result is uncertain. These MENN architectures allow the
user to decide this trade-off dynamically in this MLaaS system.
A more in-depth discussion of these results is presented in
Section VI.

V. TORMENNT ATTACK

A. Attack Overview

The main issue with any input-dependent multi-exit neural
network scheme is that a user must make a runtime decision.
At a high-level, any decision made on data that is visible to an
adversary can leak information and therefore break semantic
security. For MENNs in particular, the decision to terminate
computation early based on preliminary results will reveal a
correlation between the execution time and the underlying
class of the input. Thus, in the TorMENNt attack, an adversary
will be able to predict the classification of user’s input with a
probability better than a random guess.

To enable the TorMENNt attack, we observe that different
classification results have different recall rates when evaluated
at a constant recall threshold (Figure 5-left). For example,
based on our BinaryNet CIFAR-10 results, plane pictures
have lower entropy than other classes and can exit early
from the network. In contrast, CIFAR-10 truck pictures are
harder to classify and will most likely take the last exit of the
MENN. Therefore, if an inference operation terminates early,



an attacker can predict that the input is more likely to be a
plane than a truck.

In the privacy-preserving inference model the cloud itself
trains the neural network and owns the corresponding weights;
therefore the cloud also knows the recall rates for the model.
In this case, the user communicates directly with the honest-
but-curious cloud to stop the computation, so the cloud has
the ability to execute this template attack.

We also remark that it is possible for a third party eaves-
dropper to extract the same information, although it requires
some stronger assumptions. First, the eavesdropper must have
knowledge of the model and recall rates for individual classes,
which requires at minimum several queries to the target
inference service. Second, we assume the eavesdropper has
access to the users decision via a side-channel, such as via
decreasing communication packets, power consumption, or
memory access times on the cloud server. Luckily, there are
known techniques and mitigation strategies for these types of
side channels [42]–[47].

B. Attack Methodology

In the privacy preserving inference model, the cloud can
process encrypted user data such that user data is never directly
exposed to the cloud. The cloud does, however, directly know
which exit the user terminated computation and can compare
this information to its test set data. In this way, the cloud can
implement the TorMENNt attack and extract user information.

To launch the attack, we use the entropy-based confidence
score on CIFAR10 and the maximum-based confidence score
for Tiny Imagenet. We use 70% of the test set to generate the
recall rates

re,c,test =
exitede,c,test∑

e′∈E exitede′,c,test
, (6)

where exitede,c,test indicates the number of images belonging
to class c that terminated at exit e in our test set. This will
be the template to compare with user data for the TorMENNt
attack. For visualization, we use cumulative recall rates

cumulative re,c,test =
∑
e′≤e

re′,c,test (7)

summarized in Figure 5 (left and middle) for each of our five
networks. The distortion of the circles shows different recall
rates for different classes. From these results it is evident that
the recall rates are different for each class, thus our hypothesis
about information leakage is confirmed.

To automate the interaction of a user in our analysis, we
employ client-side scripts that send through the neural network
a random subset of n images from a single class of an attack
validation dataset. In this case, the cloud service is asked
to terminate the MENN inference early when the entropy
confidence score is below the Centropy or Cmax thresholds.
At the same time, a server-side attack script observes the early
termination exit to apply the TorMENNt attack. In particular,
the attack calculates the recall of user data re,user using an

equation similar to Eq. 6, by replacing test data with actual
user data and also dropping class c (since it is not known).

We use a bayesian model to predict the classification, where

P (c|e) = P (c) · P (e|c)∑
∀c′∈C P (c′) · P (e|c′)

. (8)

Here, P (e|c) is approximated by the test set template re,c,test
from Equation 6, and P (c) is a prior distribution of classes.
For multiple predictions, these probabilities can be determined
with the expected value

E[# of images from class c] =
∑

images

P (c|e = E). (9)

The expected value estimates the number of images in class
that the user sends.

If an attacker wants to test several different distributions,
Kullback-Liebler divergence can be used to test out the at-
tacker’s guessed distribution, performed as:

KLP (C)(ruser∥rattack) =

−
∑

c:P (c)>0

∑
e∈E

re,user · log
P (c|e, P (C))

re,user
. (10)

Here, re,user is measured user recall obtained by the eaves-
dropper, and P (C) is the attacker’s initial guess of the classifi-
cation distribution; this should be used for the prior distribution
in Eq. 8. The lower the KL divergence between the user
output data and the attacker’s predicted recall, the more likely
the attacker’s guess is accurate. The attacker can therefore
determine the classification of private user information by
finding the lowest KL divergence as Attacker Prediction =
argmin(KLc∈C).

C. TorMENNt Attack Results

The results of this prediction method are summarized in
Figure 5 and Table I. Here, we define the attacker success
rate based on the number of times the attack correctly guesses
the class divided by the total number of times the attacker
guesses, as follows:

Attacker Success Rate =
correct predictions

total predictions
. (11)

For a single image, the attacker can guess the correct class
23.5% for BinaryNet of the time, which is significantly higher
than the 10% rate expected from random guessing; even the
worst performing attack for a single image on VGG was
15.8%. This divergence also demonstrates that the semantic
security of the system is compromised based on our threat
model definition. Notably, with enough images, the success
rate of the attacker’s guess can reach 45% to 67%.

D. Attack Analysis

The average number of bits leaked from early exit decisions
is limited to

avg leaked ≤ log2(num exits) (12)



Fig. 5. Recall across Classes: These radar charts show the inconsistencies of exits taken among different classes. On the left, we show BinaryNet recalls for
each of the classes. As shown by the irregularities of the c̈ircles,̈ different classes tend to exit the network at different exit points, leaking information about a
user’s input. We utilize this information in the TorMENNt attack (Figure 6). Our Iso-recall mitigation sets the entropy levels to allow for fixed recall across
classes, shown on the right. This, however, is difficult to scale to many classes and cannot fully guarantee security.

(a) Attacks on Cifar10

(b) Attacks on TinyImageNet

Fig. 6. TorMENNt attack: Due to the inconsistencies of recall across classes,
it is possible to extract the predicted class based on which exit the user
terminates. The attack success rate is the percentage of times the attacker
correctly deduced the class of user input data, where the baseline is random
guessing. We note that TinyImageNet had fewer images in the validation set,
so the trend did not level off as in 6a. Even for a single image, the attacker
had a much better than random chance of predicting the correct class based
on the exit taken. The attacker gains more information as the user sends more
images to the cloud.

bits for a single image input. Therefore, in our BinaryMENN
inference example of a single image input, an attacker can
only leak a maximum of 2.32 bits of information, which is

not sufficient to distinguish between all ten classes of CIFAR-
10, and far from sufficient from extracting out TinyImageNet
top class. In the privacy-preserving MENN example, the user
may risk a curious cloud attacker discovering they sent a
picture of a car, but the exact make, model or license plate
information are not likely to be leaked by the cloud. Therefore,
compared to the privacy guarantees of plaintext-only MENNs,
encrypted MENNs can still provide a higher assurance level
during inference. Nevertheless, if the attacker can accumulate
multiple MENN inputs, the amount of aggregate information
grows linearly as

avg leaked ≤
num images∑

log2(num exits) (13)

bits. As a result, the TorMENNt attack becomes more impact-
ful when the attacked users provide a lot of input data or a
group of users employ the target service. This is evident by the
differences in single and batch results in Table I and Figure 6.

E. Iso-Recall Mitigation

Since information about classification is leaked by com-
paring to test-set recall, one can eliminate the backdoor by
ensuring the exits have iso-recall across all exits. This method
would prevent an attacker from leaking information about the
classification, as no unique information is provided per class.

While this approach mitigates the attack, it still suffers from
several limitations. First, enforcing iso-recall still leaves side
channels for any image parameters that are not subject to iso-
recall. For example, an attacker may still be able to leak the
brightness of an image since it is not directly controlled by
classification recall. While our experimental results show that
classification iso-recall did in fact help mitigate a brightness
TorMENNt attack for CIFAR-10, we conjecture that this may
not always be guaranteed. Moreover, this mitigation is limited
as it assumes that the test set matches real-world applications.
If this is not the case, or there are regional variations in user
data, then different real-world recall rates can exist. Thus, an



attacker can still leak information about the classes with these
differing real-world recall rates. For example, isorecall graph
in Figure 5 (right) still shows some noisy distortions due to
differences in the test and attack sets. This mitigation also
requires information about a template set, which a user would
not typically have access to.

Finally, the accuracy of the neural network degrades sig-
nificantly, as shown in Table I. In our BinaryNet CIFAR-
10 example, enforcing an iso-recall equal to the average
optimal recall for individual classes leads to a 7% decrease in
classification performance. For TinyImageNet, this mitigation
is possible but decreased the accuracy lower than the single
exit accuracy. Thus it does not scale well to large numbers of
classes.

F. Avoiding Early Terminations

One simple semantically secure defense is for the users to
ask the cloud service to evaluate the entire MENN, even if
they are satisfied with the preliminary results. This solution
does not reduce the computational cost of the MENN, but
does ensure the user data is kept private. Specifically, even
though the users are responsible for the evaluation cost of the
entire model, they still get several benefits of using a multi-
exit neural network. First, accuracy is improved when using
the multiple exits as an ensemble [8]. Second, the users do get
a preview of the neural network results early on. This feature
is secure only if the users do not leak any information when
they are locally satisfied with the results, for example, through
a direct response (or even a side channel on the edge device).

VI. DISCUSSION OF OUR FINDINGS

A. TorMENNt with Alternative Termination Schemes

Our attack model is primarily focused on the input-
dependent MENN early termination scheme. Here, we discuss
how the attack model applies to the early termination schemes
introduced in Section II-A2. This discussion will help establish
the necessary criterion for other MENN termination schemes
and broadens the possibilities for secure MENN implementa-
tions.

The budgeted early termination scheme requires users to
declare the exit upfront. Specifically, users can choose the exit
considering their application’s timing, monetary, and accuracy
requirements. If this decision is made independent of the input
data, then no information about the input data is leaked. This
method can give users optimal performance based on their
requirements without hurting security. The flexibility that FHE
MENNs offer in this respect makes them a valuable feature
for end-users.

Similarly, in anytime early termination, if the user’s decision
to terminate computation is independent of the input data and
intermediate early-exit results, then the system remains seman-
tically secure. Since this decision is not made upfront, more
responsibility is put on the user to not make decisions based on
output data. To remove this control from an unknowledgeable
user, implementations of this scheme can enforce that the users
can only ask for the result once. This inference scheme can be

helpful for systems where the timing requirements to calculate
the result vary, such as human-interactive technologies.

Finally, the distributed early termination scheme is the only
scheme to offer semantically secure early termination of easy-
to-process inputs. Since the data is processed locally, the
decision to terminate early is not shared with the cloud, which
conceals user inputs from potential eavesdroppers. However,
the user must still ensure that this information is not leaked
through an edge device side-channel or the absence of sending
data. For example, if the edge device is known to generate one
picture per minute, the absence of sending data may make the
user’s decision observable, which is significant depending on
the context (e.g., plane images are never sent to the cloud).

B. Balancing FHE-PPML Security and Efficiency

The TorMENNt attack shows that information about sensi-
tive MENN inputs could be leaked through early exit decisions
in input-dependent inference. In order to improve security,
much of the timing benefits discussed must be sacrificed.
However, privacy-preserving MENNs are still a promising
technology if their features and drawbacks are properly un-
derstood.

First, privacy-preserving MENNs can employ any of the
other termination schemes discussed in Section VI-A. The
underlying assumption of these schemes is that the early
termination is not dependent on the user data, including the
early exit preliminary results. Secure implementations of these
early termination schemes can allow users more flexibility
to choose the appropriate accuracy-timing tradeoff without
sacrificing security.

A second strategy is to simply accept the security risks of
the TorMENNt attack. For a single isolated image, an attacker
can extract on average a few bits of information about the
user based on Eq. 12. For an honest but curious cloud, this
information is severely limited, especially for a single input.
Also, the TorMENNt attack has strong assumptions that the
template dataset has similar inputs compared to real world
deployment. Our template and attack datasets did match our
benchmarks, but often in real-world applications, this is not
the case, which further protects the user.

In order to accept the risk of MENNs, it is likely best for
users to assume a malicious cloud threat model. A malicious
cloud can more directly leak attributes from users. Here, the
malicious cloud can generate both a low entropy and high
entropy result. They can select which value to send to the user
based on the result of an encrypted test by using an encrypted
multiplexer. Therefore, users need to clearly understand the
security implications of their early exit decisions, and be OK
with leaking one bit of information per exit about their input
data. An alternative approach is to make a local decision based
on early exit feedback but continue running the MENN in the
cloud to guarantee security.

C. MENN implementations on non-FHE PPML

MENNs may also be suitable for other PPML solutions (not
only FHE-based PPML). We provide a brief discussion of the



challenges we forsee with such potential implementations, as
this remains an exciting research direction.

LHE-based schemes could be used to protect MENNs, but
several drawbacks make them less ideal candidates than FHE-
based schemes. First, LHE has limited multiplicative depth,
making the usefulness of MENNs questionable. It is infeasible
for the LHE-MENNs to require that the data be sent back to the
user to decrypt and re-encrypt at every exit, since the amount
of intermediate data that would need to be sent back to the user
would be very large, creating a network bandwidth bottleneck.
In the BinaryMENN network, the first exit of BinaryNet for
CIFAR10 is of size 30 · 30 · 128, which corresponds to 230kB
of int16 plaintext data. When this data is encrypted with
a modern library, such as SEAL [26] with a 128-bit security
level, it would yield 1.7TB bytes of ciphertext data to send
back and forth to the user to process.

MPC-based schemes would also be good candidates for
MENNs. MPC-based solutions are 2-3 orders of magnitude
faster than FHE-based solutions [16], [33], but have other
tradeoffs to consider. An important drawback of MPC-based
solutions is that they require the user to also engage in
non-linear pooling and activation functions. Such involvement
requires the user to apply their local computational resources
and network bandwidth, although the impact is less than the it-
erative LHE-based solution mentioned above. For example, the
CIFAR-10 neural network evaluated with MPC in MiniONN
[34] and Gazelle [33] incurs a communication overhead of
9.8GB and 1.2GB, respectively, which is still high, especially
considering that this network is less than half the size of
BinaryNet.

VII. RELATED WORKS

Many works look to steal model IP through various timing
[42]–[45], electromagnetic [46] or power [47] side channels.
In these works, an attacker sends inputs through the system
and tries to recover the model weights. Unlike TorMENNt,
these works do not look to protect user data during inference
but are instead concerned with model IP (i.e., the network
weights).

Several defenses against these attacks have been developed.
MaskedNet [48] claims to be the first hardware inference
engine that protects against model side channels. Its attacks
are focused on binarized neural networks. The authors employ
a masking technique where circuit-level inputs (e.g., an adder)
are divided into two parallel circuits so that any information
leaked is not useful to the adversary. Other generic side-
channel obfuscations contribute to a large body of literature.
The most relevant works include Zhang et. al. [49] that adds
random timing mitigation to program outputs, Raccoon [50]
that introduces decoy paths into the program flow, while oth-
ers focus on secure execution environments for side-channel
prevention [51]–[53], as well as cloud-based side-channel
prevention [49], [54], [55].

TorMENNt is different from the aforementioned side-
channel attacks since it only considers whether certain MENN
layers are executed or not. For this reason, TorMENNt is more

accessible compared to these side-channel attacks, as it does
not require fine-grained power or electromagnetic traces. This
also makes TorMENNt impervious to previously proposed
obfuscation and masking defenses that aim to distort fine-
grained details of the side channels but do not obfuscate
or mask whether a computation occurs. TorMENNt also is
applicable to the emerging PPML scenarios, which is not the
case for the aforementioned attacks. Finally, these side-channel
attacks are only intended for single exit networks and are
geared towards stealing model weights/IP, not the user inputs.

One notable example is the work by Wei et. al. [47] that
attempts to steal inference data via a power side-channel
attack. Their FPGA-based setup uses oscilloscope data to
predict model classification on the MNIST digit dataset [56].
Their threat model assumes that the attacker has access to
a high-resolution oscilloscope or power monitoring Trojan
horse. Overall, the authors report a high model prediction
attack success rate of 89% for their MNIST dataset. However,
TorMENNt has a different threat model that involves a less
intrusive adversary using and targets MENNs. In particular, the
attack by Wei et. al. requires fine-grained power traces and is
subject to obfuscation and masking defenses, which is not the
case with TorMENNt. Therefore, TorMENNt can support high
noise tolerance in the side channel. Nevertheless, Wei et. al.
report 89% attack success rate, whereas TorMENNt is limited
by Eq. 12 and achieves about 22% attack success rate using
5 exits. Notably, PPML techniques would defend against the
side channel of Wei et. al., whereas the TorMENNt attack is
applicable on both encrypted and plaintext inference.

Finally, Dong et. al. [20] proposed fingerprinting MENN
timings to prevent IP theft. They found that MENNs with
input-dependent exit termination schemes release information
about the model IP (e.g., the network weights). Therefore, they
could determine the difference between independent and stolen
MENN models. Our TorMENNt attack leverages a similar
principle (i.e., early exits leak information), but exploits this
leakage to predict the user inputs for a given model IP.
Conversely, Dong et. al. utilize this leaked information in an
attempt to recover the model IP given the user inputs.

To the best of our knowledge, this is the first work to
investigate MENNs for FHE, and the first to expose a high-
level ML-based side-channel that is immune FHE privacy
protections.

VIII. CONCLUSION

This work introduces the possibility of using multi-exit neu-
ral networks in the context of fully homomorphic encryption.
We found that there are signifigant accuracy-latency benefits
for using FHE-MENNs over single exit networks, achieving
up to 7% accuracy benefits for the same latency compared to
single exit networks.

We also explore the security of MENNs, developing the
TorMENNt attack to leak information on a users input data.
We demonstrate how this attack can leak classification infor-
mation about a user’s input, be remark that this attack can only
leak one bit of information per exit per image. We discuss
how this could be acceptable for many PPML applications



and users. We further provide suggestions on how to minimize
the TorMENNt security vulnerability. Our Iso-recall mitigation
can control for a limited number of inputs, but incurs an
accuracy drop that increases the more classes or variables we
try to control. Despite the TorMENNt vulnerability, we see
FHE-MENNs as a promising speed-up alternative for PPML
and recommend developers to consider this technology for
their applications.
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