
PEEV: Parse Encrypt Execute Verify - A Verifiable
FHE Framework

Omar Ahmed
oaaa@udel.edu

Charles Gouert
cgouert@udel.edu

Nektarios Georgios Tsoutsos
tsoutsos@udel.edu

Abstract—Cloud computing has been a prominent technology
that allows users to store their data and outsource intensive
computations. However, cloud users are also concerned about
protecting the confidentiality of their data against attacks that
can leak sensitive information. Although traditional cryptography
can be used to protect static data or data being transmitted
over a network, it fails to allow encrypted data processing.
Homomorphic encryption can be used to allow processing directly
on encrypted data, but a dishonest cloud provider can alter
the computations performed, thus violating the integrity of the
results. To overcome these issues, we propose PEEV, a framework
that allows a developer with no background in cryptography
to write programs operating on encrypted data, outsource
computations to a remote server, and verify the correctness
of the computations. Our framework relies on homomorphic
encryption techniques as well as zero-knowledge proofs to achieve
verifiable privacy-preserving computation. Our approach enables
low performance overheads to support practical deployments,
and enables developers to express their encrypted programs in
a high-level language, while abstracting all complexities related
to encryption and verification.

I. INTRODUCTION

Cloud computing has been rapidly growing and adopted
by many organizations to outsource heavy computations to
high-performance servers that are provided through services
maintained and operated by third parties. This removes the
burden of creating and maintaining costly computing infras-
tructure for an organization. Also, it provides people and
businesses with increased productivity, speed and efficiency,
and cost savings [58, 49, 51]. However, end users keep voicing
concerns about their sensitive data, as cloud-level threats can
put their privacy at risk. In this case, a cloud user cannot
fully trust a cloud provider; for example, since the client’s
data are stored and processed on the cloud’s servers, a curious
service provider could read the user’s data. This can potentially
lead the service provider to learn secret information about
individuals and organizations (such as financial information
and health records). Likewise, a curious provider can use their
clients’ data for online advertising [50]. In addition, cloud
computing is susceptible to a variety of cyberattacks including
network attacks and account hijacking [19, 31, 44].

While numerous research efforts have been proposed to
counter cloud attacks [18, 39, 33], deploying them in practice
is limited and doesn’t fully prevent a curious provider from
reading the client’s data. A potential solution to mitigate these
issues is using modern cryptography: end users can encrypt
their data using algorithms like AES and upload them to
remote cloud servers. However, this method is only suitable

for protecting static data, which limits usability and prevents
the server from performing any meaningful computation on the
outsourced data. But what if end users need to process their
data after being uploaded to the cloud and also preserve their
privacy? In this case, traditional cryptography cannot help.

To address this challenge of privacy-preserving computation
on the cloud, we need to employ advanced cryptography
that allows a cloud provider to perform computations di-
rectly over encrypted data without revealing the underlying
sensitive plaintexts. A promising solution is Fully Homomor-
phic Encryption (FHE), which allows performing meaningful
computations over encrypted data without decrypting them;
specifically, the decryption of a processed FHE ciphertext
equals the output of an equivalent computation over plaintext
data. For example, suppose that a user has two plaintext values,
x and y, and a function F , such that:

z = F (x, y) = x+ y.

Here we assume the values x and y are confidential, and the
user does not have the computational resources to compute the
function F locally. If the user does not trust a cloud provider
with her data in plaintext, FHE offers a viable solution. The
client can outsource the computation of F by homomorphi-
cally encrypting x and y to x′ and y′ and introducing an
equivalent homomorphic function F ′, such that:

z′ = F ′(x′, y′) = x′ + y′, and Decrypt(z′) = z = x+ y.

Essentially, FHE ensures that

F (plaintext) = Decrypt(F ′(ciphertext))

Although FHE offers a paradigm-shift in privacy-preserving
computation, it has considerable difficulties that hinder devel-
opers from creating scalable and reliable trustworthy cloud
services. These difficulties include the correct setup of encryp-
tion parameters, translating plaintext data into ciphertext data,
and converting a program that operates on the plaintext data
into a version that supports ciphertext data. While there are
several homomorphic encryption implementations available
[54, 5, 36], they are not trivial to use without a thorough
understanding of the cryptographic primitives. On top of that,
writing and maintaining a consistent program flow is chal-
lenging, especially considering these libraries offer different
APIs and some of the common programming primitives (e.g.,
loops) are not directly supported. In addition to the low-
level homomorphic libraries, state-of-the-art compilers have

emerged that translate a program written in a high-level
language into its FHE equivalent [61, 11, 26, 27, 46, 28].

Therefore, FHE has become a powerful new tool for run-
ning computations over encrypted data. However, one major
challenge still remains: how can the users be assured that
the encrypted computation was performed faithfully? Indeed,
a client cannot be sure that all steps of the outsourced function
were correctly followed; for example, when a client sends
ciphertexts x′ and y′ to the cloud and request to compute
F ′(x′, y′), an untrusted cloud server can cheat and compute
another arbitrary function G′(x′, y′). In this case, the user
receives and decrypts the resulting ciphertext, and instead of
getting the sum x + y, she may get the difference x − y.
Verifying that the outsourced computation was performed
faithfully is a serious concern for applications that involve
critical data, such as medical applications informing decisions
on patients’ health. Equally important, Machine Learning as a
Service (MLaas), which refers to cloud-based services that
run pre-trained machine learning models on demand, has
become increasingly popular in the business sector [29, 56].
An untrusted MLaaS provider can violate the integrity of a
computation, leading to drastically incorrect results.

To address this challenge, the research community has
focused on creating techniques to verify an outsourced com-
putation without leaking any sensitive data. One prominent
method is zero-knowledge proofs (ZKPs), which are verifica-
tion protocols that allow one party (called prover) to convince
another party (called verifier) that a mathematical statement is
valid without revealing any additional information other than
the correctness of the statement [25]. ZKPs have gained much
attention and improved over the years due to their importance
in verifiable computation [34, 60, 41, 45].

In the cloud computing paradigm, the prover is the cloud
server, the verifier is the end user, and the statement to be
proved is the computation over the encrypted values. In simple
terms, the process works as follows: the user uploads both
the encrypted data and the function that needs to be executed
directly over the encrypted data. The cloud then performs the
computation, generates the computation’s proof, and sends the
encrypted result along with the proof back to the user. The user
then verifies this proof and proceeds to decrypt the result if the
proof is validated. Otherwise, the encrypted result is discarded.

In this work, we combine the power of fully homomorphic
encryption and zero-knowledge proofs, creating a trustworthy
computing framework, dubbed PEEV, that enables both private
and verifiable computation. In this context, a user can delegate
the execution of a program processing FHE ciphertexts to
a remote server, while also verifying the integrity of the
computation using ZKPs. Notably, in our approach, a user
does not need extensive knowledge of cryptography in order
to write a program that will be executed homomorphically
by the cloud; instead, the user writes the program in a high-
level language, which makes it easier for developers, instead
of using the low-level APIs provided by FHE libraries.

A key component in our approach is the translation of a
high-level program into an FHE-compatible arithmetic circuit.

Such circuit is a blueprint that defines the encrypted inputs
and the computation to be executed on them. It is no surprise,
however, that creating an arithmetic circuit from high-level
code is an intricate process, as it involves multiple steps,
from analyzing the program flow and eliminating branches,
to unrolling loops, and optimizing the code (e.g., removing
variables that don’t contribute to the final result). PEEV offers
a comprehensive framework that automates key parts of the
process: reading and executing an arithmetic circuit in FHE,
initializing and setting the encryption parameters, generating
and verifiing the execution proof, and decrypting the result.
Overall, our contributions can be summarized as follows:

1) We introduce PEEV, a verifiable privacy-preserving
computation framework that combines the power of
zero-knowledge proofs and fully homomorphic encryp-
tion for secure outsourcing to the cloud.

2) Design of a novel parser (YAP) that automatically
translates high-level code into optimized low-level HE
programs.

3) A new Operations List (OpL) intermediate representa-
tion for FHE, featuring an easy to understand syntax,
and compatibility with different HE library targets.

The rest of the paper is organized as follows: Section II
provides a background on homomorphic encryption schemes
and libraries, zero-knowledge proofs, and compilers for HE
and ZKPs. Section III introduces our proposed approach for
achieving verifiable privacy-preserving computation on en-
cryption data, while Section IV describes the implementation
details of our framework. Section V presents our experimen-
tal results over representative benchmarks, while Section VI
discusses prior works addressing the problem of verifiable
computation. Finally, our concluding remarks are presented
in Section VII.

II. BACKGROUND

A. Homomorphic Encryption Schemes

Homomorphic encryption is akin to traditional cryptog-
raphy, but with the additional ability to perform computa-
tions directly on ciphertexts. Various homomorphic encryption
schemes have different computational capabilities. In particu-
lar, HE schemes are categorized into three classes: partially
homomorphic schemes, leveled homomorphic schemes, and
fully homomorphic schemes.

• Partial HE (PHE). These schemes support unlimited
evaluations of one type of operation, such as addition
or multiplication. Although they are easy to integrate
into existing codebases and are generally computationally
efficient, their applications are limited, such as for access
control [53]. Examples of PHE include the unpadded
RSA, ElGamal, and Paillier cryptosystems [43].

• Leveled HE (LHE). More powerful than PHE, LHE
supports evaluating circuits with both addition and mul-
tiplication but with limited depth. The security of LHE
schemes depends on the learning with errors (LWE) [52]
and ring learning with errors (RLWE) [42] problems. As a

result, performing computations on encrypted data leads
to noise growth. If the noise reaches a certain limit, it
can result in incorrect decryption of the output for deep
circuits, especially those implementing algorithms involv-
ing a large set of multiplications. In particular, the noise
grows slightly with each addition operation, whereas it
grows substantially with each multiplication operation.
Likewise, as circuits get deeper, evaluating them becomes
more expensive because they require larger parameters to
accomodate the noise requirements. This results in more
costly additions and multiplications. Examples of LHE
schemes are the Brakerski-Gentry-Vaikuntanathan (BGV)
[9], the Brakerski/Fan-Vercauteren (BFV) [20], and the
Cheon-Kim-Kim-Song (CKKS) [14] cryptosystems.

• Fully HE (FHE). This variant supports evaluating arbi-
trary circuits by allowing unbounded addition and multi-
plication and is an extension of LHE with bootstrapping.
The latter is the mechanism that stands behind the robust-
ness of FHE; it reduces the noise level within a ciphertext,
hence allowing more computations to be carried out on
the data [23]. Nevertheless, bootstrapping is a very costly
technique, being over an order of magnitude slower than
other HE operations. Even with proposed optimizations
[24, 13, 32], it still adds noticeable computational over-
head relative to LHE schemes. Therefore, in the case of
circuits with limited depth, an LHE scheme is a better
option compared to an FHE scheme. As such, we focus
on LHE in this work.

B. Homomorphic Encryption Libraries

Given the powerful capabilities of homomorphic encryption
and the increasing demand of privacy-preserving computing,
many open-source HE libraries have been proposed. These
libraries implement different schemes, and each one exhibits
its own API for executing operations on encrypted data. A few
prominent examples are discussed below:

• Blyss SDK. Blyss is a private information retrieval li-
brary, built on top of an HE backend. It is written mainly
in Rust and JavaScript.

• TFHE. Written in C++, TFHE provides fast bootstrap-
ping based on the CGGI cryptosystem [15, 16]. It oper-
ates on Boolean circuits, where plaintext data are encoded
into binary and the ciphertext is generated by encrypting
the plaintext bit-by-bit. Another implementation of CGGI
is TFHE-rs, which is written in Rust and supports encod-
ings for both integer and Boolean arithmetic [62].

• FINAL. A cryptographic implementation written in C++
that provides FHE based on the LWE problem and NTRU
cryptosystem. FINAL exhibits optimized bootstrapping
which makes it more efficient than the TFHE library [8].

• HElib. HElib implements the BGV and CKKS schemes
[30]. The developers of the library introduced optimiza-
tions for evaluating homomorphic operations. However,
the bootstrapping and execution times remain high, which
makes it unsuitable for executing arbitrary circuits.

• Lattigo. An HE library based on RLWE and written in
the Go language, it implements the BFV, CKKS, and
BGV schemes. Additionally, Lattigo supports multi-party
homomorphic encryption [36].

• SEAL. Microsoft released its own HE library called
SEAL [54]. It supports the BGV and BFV schemes for
performing additions and multiplications on encrypted
integers, and the CKKS scheme for performing additions
and multiplications on encrypted real numbers. SEAL
provides a simple API for writing leveled homomorphic
encryption. Although it is not suitable for deep circuits
involving a large number of computations, it is optimized
for applications that include a finite number of arithmetic
operations for several reasons: its simplicity compared to
other libraries, the fact that it is written in C++ with
no required dependencies (rendering it easy to compile
and deploy in different environments), and its fast per-
formance for arithmetic operations. For these reasons, we
chose to use SEAL as the HE back-end for this work.

C. Zero Knowledge Proofs
ZKPs represent a major innovation in applied cryptography

and are used extensively in blockchains and cryptocurrency
[55]. They were first introduced in 1985 [25] and enabled con-
veying a claim without revealing any additional information
about that claim other than its correctness or incorrectness.
A zero-knowledge protocol has three properties, described
below:

• Completeness. If the claim is true, and the prover and
verifier are honest, the verifier will accept the proof.

• Soundness. A dishonest prover cannot trick the verifier
into accepting an invalid claim.

• Zero-knowledge. The proof leaks nothing about the
claim, thus, a verifier learns nothing about the claim
beyond its validity or invalidity.

Besides the aforementioned properties, a ZKP has three
basic elements:

• Witness. This is the secret data that a prover assumes
knowledge of.

• Challenge. This is a sequence of queries generated by
the verifier to confirm the prover’s claim.

• Response. This is a sequence of answers generated by
the prover as a response to the challenge issued by the
verifier.

From these three elements (Witness, Challenge, and Re-
sponse), we can conclude that the prove-verify process is
similar to a sequence of questions and answers. In fact, this
structure describes the interactive ZKP. In this scenario, the
prover and the verifier establish a back-and-forth communi-
cation channel with queries from the verifier and answers
from the prover. As a result, this interactive nature limits the
usage of the ZKPs as they are time-consuming and introduce
a significant communication overhead, which makes them
impractical for some applications.

Conversely, a non-interactive ZKP (NIZK) was first pro-
posed by Blum et al. in 1988 [6]. In this scheme, the prover

has a secret key for generating a proof, and the verifier has
another key for verifying the proof. In this way, there is no
need for an interactive session between the prover and the
verifier, making ZKPs more practical.

There are three common types of NIZK systems: zk-
SNARK, zk-STARK, and Bulletproofs. These are discussed
below:

• zk-SNARK. This stands for Zero-Knowledge Succinct
Non-Interactive Argument of Knowledge and was first
introduced in [4]. It requires a trusted setup to publish
a proving key and a verification key. These two keys
are public parameters, which are generated only once
for each circuit. A zk-SNARK system has the following
properties:

– Zero-knowledge. The proof leaks nothing about
the witness, so a verifier learns nothing beyond its
validity or invalidity.

– Succinctness. The proof is small and can be verified
quickly and easily.

– Non-interactive. The system does not require multi-
ple rounds of interaction between the prover and the
verifier.

– Argument of Knowledge. The prover generates a
proof that is sound, and it is impossible for a prover
to generate a valid proof for an invalid witness.

• zk-STARK. This stands for Zero-Knowledge Scalable
Transparent Argument of Knowledge, introduced in Ben-
Sasson et al [3]. A zk-STARK is similar to a zk-SNARK
but overcomes the problem of trusted setup. Besides the
zero-knowledge and the argument of knowledge proper-
ties, zk-STARK has the following two properties:

– Scalable. This property makes STARKs more fa-
vorable over SNARKs, as it is faster at proving
large proofs than SNARKs. Given a large witness,
proof generation and verification grow slightly with
STARK; unlike SNARK, they grow linearly.

– Transparent. This property means STARK does not
need a trusted setup; it generates its parameters based
on publicly available randomness.

• Bulletproofs. This protocol generates short proofs (loga-
rithmic in the witness size) without the need for a trusted
setup environment. However, Bulletproofs’ verification
process is more time-consuming than SNARK verifi-
cation. Bulletproofs are efficient for cryptocurrencies;
thus, it is very suitable for systems that require secure
transactions and distributed and trust-less blockchains
[10].

D. FHE and ZKP Compilers

Researchers in the cryptography community have been
working extensively to create compilers and frameworks that
facilitate the creation of FHE systems and other related
applications. These compilers aim to translate a high-level
language program written over plaintext data into an equiv-
alent encrypted version. This encrypted version could be an

implementation using the primitives provided by HE libraries.
Likewise, in case of ZKP systems, compilers create an R1CS
(Rank-1 constraint satisfiability) system. The R1CS captures
a computation and transforms it into a set of matrices and
vectors that can be used by proof systems. Such tools have
several advantages: by simplifying the code-writing process,
a developer does not need an in-depth knowledge of cryp-
tographic primitives, code optimization, and managing key
setup, encryption, and decryption. A selection of state-of-the-
art compilers are discussed below.

• Circom is a compiler with its own language used for
defining arithmetic circuits for ZKP applications. It is
written in Rust and provides developers with an easy-to-
use interface for generating R1CS files. The authors of
Circom implemented three zk-SNARK systems: snarkjs,
wasmsnark, and rapidSnark.

• CirC is a compiler infrastructure, written in Rust, that
supports translating a high-level language into circuits
[48]. CirC can compile code written in C, ZoKrates, or
Circom into circuits for Satisfiability Modulo Theories
(SMT), Multi-Party Computation (MPC), or R1CS. One
of the powerful features of CirC is that it compiles differ-
ent high-level languages into an optimized Intermediate
Representation (IR). Then, the IR is translated to the
target circuit. Although CirC supports different front-
end languages, it works best with a modified version of
the ZoKrates language, called Z#, supporting different
constructs such as loops and arrays.

• T2 is a cross-compiler and a benchmark suite [28]. The
main goal of T2 is to explore and compare different HE
libraries, including HElib, Lattigo, PALISADE, SEAL,
and TFHE, using an extension of the TERMinator Suite
[46]. The authors use their own domain-specific language
to write unified code that can be compiled to several
different HE libraries, ensuring a fair comparison between
them.

• HELM is a privacy-preserving framework for processing
data in the encrypted domain with FHE [27]. HELM
compiles arbitrary programs written in Verilog into homo-
morphic circuits. The authors accelerated the execution
of circuits by introducing a scheduler that allows the
processing of encrypted data in parallel and employing
rigorous logic optimization techniques.

• Concrete is a CGGI compiler that compiles programs
written in Python into their FHE equivalent [61]. Con-
crete supports a large set of Python operators, in addition
to its compatibility with the NumPy library. Despite the
extensive work devoted to developing this library, it is
not mature yet; it has several limitations, such as not
supporting control flow statements (e.g., if or while
loops), not supporting floating point inputs or outputs,
and a small bit width of encrypted values.

III. VERIFIABLE PRIVACY-PRESERVING COMPUTATION

The goal of this work is to add an integrity component
to privacy-preserving computation, thus enabling verifiable

privacy-preserving computation, by introducing the PEEV
framework. In this regard, a client who is outsourcing a
computation to a potentially dishonest server can verify the
validity of the computation without revealing any sensitive
information.

Figure 1 depicts our proposed approach. To outsource a
computation, the client must define the arithmetic circuit to
be executed on the server and encrypt the circuit’s inputs.
The client then sends the arithmetic circuit along with the
encrypted input, R1CS and the evaluation key to the server.
The server executes the circuit using the evaluation key,
generates the proof using the proving key, and sends the proof
along with the encrypted result to the client. The client verifies
the proof using the verification key, and if it is valid, accepts
the computation and decrypts the result. If the proof is invalid,
the client discards the result.

A. Client-Side Operations

For a client to delegate a computation to a remote server,
two steps have to be completed first: circuit creation and
encrypting the circuit’s input. Creating an arithmetic circuit
is the process of writing the program that will be executed
homomorphically on a remote server. An major challenge is
that writing these programs in HE libraries is not trivial, as it
requires the user to define each primitive operation explicitly
and track each operation’s input and output. The user can end
up hard-coding the circuit, leading to potentially thousands of
lines of code for even relatively simple algorithms. Moreover,
introducing optimizations or updates to the code involves mod-
ifying all subsequent lines and other parts of the program since
most operations are dependent on each other. Furthermore,
incorporating the creation of the R1CS into the program will
lead to larger, unoptimized code, so that writing HE programs
by hand becomes an infeasible process.

To overcome this issue, PEEV lets the user write her HE
program in a high-level language, which is quite easy for de-
velopers to optimize, maintain, and define their computations.
In this way, our methodology offers several benefits, such as:

• The user will write more readable code that includes
common programming structures such as while loops.

• The user can write programs in fewer lines of code
compared to a handwritten encrypted implementation.

• Optimizing the code or making future modifications can
be done rapidly and in a straightforward manner.

• Eliminating the complexity of tracking each operation’s
input and output and the creation of the R1CS needed for
verifiability.

• The user does not need to manually initialize any HE or
ZKP parameters.

Towards that end, we introduce our domain-specific parser,
called YAP, that translates a user’s program into an intermedi-
ate representation called Operations List (OpL). Specifically,
the OpL represents the user’s program in a form that HE
libraries can easily parse. The syntax of the OpL contains
no complex structures (i.e., functions, classes, and loops), but
rather a sequence of operations. The OpL consumes the user’s

input and lists all the required operations to compute the final
output. Figure 2 illustrates an example of how YAP flattens a
simple equation that can be written in almost any high-level
language into an OpL.

The only task an end-user has to perform is to write the
desired high-level program, and PEEV handles all necessary
steps automatically, including the generation of the OpL,
setting of encryption and evaluation parameters, encrypting
the input, creating the arithmetic circuit, as well as verifying
the proof and decrypting the result after receiving them from
the cloud. Initializing the required zk-SNARK keys requires
a trusted setup, where the user sends their R1CS to a trusted
third party that generates the proving key for the cloud and
the verification key for the user.

B. Server-Side Operations

After receiving the arithmetic circuit, R1CS, and the en-
crypted inputs from the user, the server allocates the hardware
resources required for the circuit execution. Also, for executing
the circuit, the cloud must have the target HE and ZKP
libraries. For instance, our framework employs SEAL and
zk-SNARK. After the homomorphic evaluation of the circuit
finishes, the cloud uses the proving key to generate a proof,
given the circuit and its R1CS.

Notably, an untrusted cloud will not be able to violate
the integrity of the computation. Suppose a cloud provider
modified the arithmetic circuit and the R1CS provided by the
user (e.g., instead of doing addition between two values, doing
multiplication); in this case, the cloud will generate an invalid
proof, which will be detected on the client side. This is because
the proving and validation keys are functions of the R1CS
created by the client. When the user inputs his copy of the
R1CS to the verification function, the proof will fail to verify
the computations defined by the R1CS.

As shown in Figure 3, the client passes the R1CS definition
to the ZKP key generation algorithm, which outputs a verifi-
cation key for the user to verify the proof and a proving key
for the cloud to generate the proof. If the R1CS is changed
after key generation, the proving key will not generate a valid
proof. Since we are using a zk-SNARK proof system, the
key generation algorithm requires a trusted setup environment,
which could be acquired through a trusted third party.

IV. IMPLEMENTATION DETAILS

A. Verifiable FHE

For enabling private computation, we implement PEEV
using SEAL’s implementation of BGV as a back-end. The
SEAL library has several advantages that make it a suitable
choice for this work. Some of these advantages are:

• It provides a simple, mature API compared to other li-
braries, which makes integrating it with other frameworks
more feasible.

• SEAL is implemented in C++, which can be faster com-
pared to counterparts in languages like Python. Besides,
C++ is a versatile language used to develop a wide variety

Encrypted input

Proving keyProving key

Encrypted resultEncrypted resultProofProof

Circuit Creation
Data Encryption

Circuit Creation
Data Encryption

Proof Verification
Result Decryption

Proof Verification
Result Decryption

Evaluation key

+
x

y
z+

x

y
z

Arithemtic CircuitArithemtic Circuit

+
x

y
z

Arithemtic Circuit

Verification keyVerification key

Proof Generation

Proof Generation

Circuit Execution

Circuit Execution

R1CS

Fig. 1: Client-Server Communication: The client creates the arithmetic circuit, R1CS, and evaluation key, encrypts the input,
and sends them to the server. The server runs the computation, generates the proof, and sends the result and the proof back
to the client. The client checks if the proof is valid and decrypts the result.

$r0 := 11
$r1 := 2
$r2 := $r0 + $r1
$r3 := 16
$r4 := $r3 - $r2

Fig. 2: YAP flattens the equation 16−(11+2) into a sequence
of operations. The OpL lists every single operation in a single
line, and subsequent lines are dependent on previous lines.

of applications, including database systems, embedded
systems, and banking applications.

• It supports different operating systems and environments,
including Linux, Android, MacOS, and iOS.

• SEAL enables batching for encoding multiple messages
into a single ciphertext, which can increase the HE
throughput by several orders of magnitude for certain
types of applications.

• Performing arithmetic operations in SEAL is faster than
performing them in other libraries such as TFHE, which
operates on bits.

For enabling verifiable computation, we use Rinocchio as
our back-end ZKP system [22]. Rinocchio is a SNARK that
allows verifying ring-based computations. It offers improved
performance compared to other systems, and is more FHE-
friendly because it supports lattices, which are also the math-
ematical foundations of FHE schemes [57].

B. Translating High-level Languages into Circuits

One of our goals is to allow developers with limited or no
in-depth knowledge of cryptography to write programs that
can be executed securely on remote servers and verify the
computations. In order to do so, we introduce YAP, which is
a parser that takes a program written in a high-level language
and transforms it into OpL. The OpL is then used to create
the arithmetic circuit and its R1CS.

R1CSR1CS

Verification keyVerification key Proving keyProving key

Key Generation
 Algorithm

Trusted Environment

Fig. 3: The cloud user inputs the R1CS to the ZKP key
generation algorithm. The key generation process requires a
trusted environment, which can be achieved through a third-
party who offers a trusted setup. The algorithm outputs two
keys: one for the cloud to generate the proof, and the other
for the client to verify the proof. Any changes made to the
R1CS should reflect new keys.

Compiling high-level languages is not a trivial process, as
it includes comprehending the program flow and transform-
ing complex structures (such as functions and loops) into
a simple sequence of primitive operations. Besides that, the

compiler should not simply translate every line of code into
its corresponding operation; it should optimize the output by
removing unusable code blocks and ignoring unused variables
or operations that do not contribute to the final result.

We adopt the CirC compiler to take part in this translation
process. CirC can compile a modified version of the ZoKrates
language called Z# into circuits used for SMT and ZKP.
Specifically, we take advantage of the intermediate represen-
tation (IR) of CirC. YAP consumes this IR and transforms
it into OpL. Processing the IR is a challenging process, as
it includes a lot of auxiliary information that does not relate
to our application (e.g., metadata). YAP processes the IR as
follows:

• Eliminating unwanted blocks such as metadata and prime
numbers that are used as moduli.

• Unfolding nested operations into a single operation per
line.

• Converting binary values to integers.
• Mapping the index of a value into the variable holding

that value.
• Converting array contents into variables, where each

variable preserves its value and identity with respect
to its source array. Hence, accessing an array index is
equivalent to accessing the value of the variable of that
index.

• Storing the intermediate results between operations.

After getting the OpL, the next step is creating the HE
program that performs the computations defined in the OpL
in the encrypted domain using SEAL. To achieve this, the
PEEV framework includes two basic components: the first
is the Initializer class, and the second is the Circuit class.
The Initializer sets the parameters required for Rinocchio
and SEAL. Furthermore, it creates the required objects for
wrapping up the parameters and the encoding objects for
enabling batching. The Circuit class handles the creation of the
circuits, the creation of R1CS, encrypting the values, perform-
ing ciphertext maintenance operations such as relinearization,
and providing the front-end for executing the operations on
encrypted data. We remark that relinearization is a necessary
step in homomorphic computation that solves a key issue when
multiplying two ciphertexts. After ciphertext multiplication,
the product ciphertext will be approximately 50% larger in size
and can no longer be decrypted under the original secret key.
Relinearization will map the larger product ciphertext back to
the original ciphertext size and also result in a valid ciphertext
encrypted under the original key [20]. In addition, the Circuit
class provides necessary functions for generating and verifying
ZKPs and returning the decrypted result.

Figure 4 summarizes the workflow of our proposed ap-
proach. The user writes the program in a high-level language,
then CirC compiles it and generates the IR, before YAP
parses the IR into OpL, and finally the OpL is used to
create the arithmetic circuit and its R1CS definitions. Next,
the Rinocchio key generation algorithm generates a proving
and a verification key based on the R1CS. After executing the

circuit, the cloud uses the proving key to generate the proof.
Finally, the cloud user verifies the proof using the verification
key and decrypts the result of the circuit.

We employ the BGV scheme in our system to perform
leveled HE. This enables executing circuits with limited depth,
but at the same time, providing faster running times. This
makes our system more practical for applications that involve
a finite number of additions and multiplications. For our
experimental evaluation (next section), we use a polynomial
modulus degree of 214 and plaintext precision of 30 bits in
SEAL, which yields 128 bits of security. Meanwhile, Rinoc-
chio uses a polynomial modulus degree of 211 and plaintext
precision of 30 bits (also 128 bits of security). We use such
a large polynomial modulus degree for SEAL to allow more
complicated encrypted computations.

V. EXPERIMENTAL RESULTS

To evaluate PEEV, we employ benchmarks that involve
different sets of mathematical operations such as addition,
subtraction, and multiplication, including computing the Fi-
bonacci sequence for 8, 16, 32, and 64 iterations, square matrix
multiplication for 2×2 and 3×3 matrices, the sum of squares
for integers in range 1 to 8, 1 to 16, and 1 to 32, chi-squared,
the summation of 8, 16, 32, and 64 values, vector dot-product
of 8, 16, and 32 values, the squared Euclidean distance of 8,
16, and 32 values, the factorial for n=5, 8, and 12, and the
Hamming distance of 4, 6, and 8 values. We run these tests
on a Windows laptop with a 6th generation Intel i5 processor
at 2.30 GHz and 16 GB of RAM.

We remark that the factorial and Hamming distance pro-
grams use different parameters from other programs. For
the factorial, we employ larger parameters to support larger
plaintext precision in SEAL and avoid overflow; we set the
polynomial modulus degree to 215 and the plaintext bit size
to 32 bits in this case. Meanwhile, the Hamming distance pro-
gram uses a polynomial modulus degree of 211 with plaintext
precision of 20 bits for Rinocchio, and a polynomial modulus
degree of 215 with plaintext modulus value of 13 for SEAL.
The Hamming distance uses a small plaintext modulus value
and a large polynomial modulus degree to support computing
the equality check operation (e.g., x == y); this operation
requires exponentiation of the encrypted difference between
two values to the value of the plaintext modulus −1; this yields
1 if the two values are not equal and 0 otherwise. Notably, the
multiplicative depth of the equality operation scales linearly
with the plaintext modulus, necessarily requiring a smaller
precision for efficient LHE operations. Also, we disabled
batching for the Hamming distance program, as it requires
the plaintext modulus to be a prime number congruent to 1
modulo 2×N , where N is the polynomial modulus degree.

Table I summarizes the execution times of PEEV evaluated
across 26 different benchmarks. The OpL to Circuit column
presents the time required for parsing the OpL file into SEAL
and encrypting the values; meanwhile, the Circuit&R1CS
Generation column lists the time required for creating the
arithmetic circuit and its R1CS definition. The Rinocchio Keys

def main(u32 a, u32 b) -> u32:
 return a + b

High-level Language

def main(u32 a, u32 b) -> u32:
 return a + b

High-level Language
YAP('2 (bvadd '0 '1))

('3 (bvadd '1 '2))

IR

('2 (bvadd '0 '1))
('3 (bvadd '1 '2))

IR

$r2 := a
$r3 := b
$r4 := r2 + r3

OpL

$r2 := a
$r3 := b
$r4 := r2 + r3

OpL

Circuit creation

R1CS generation
Key generationKey generation

Circuit executionCircuit executionProof generationProof generation

Proof verificationProof verification Key generation

Circuit executionProof generation

Proof verification
Encrypted result

Decrypted result

Decryption

Fig. 4: Workflow of our verifiable privacy-preserving computation model. Starting with ZoKrates code, the program is converted
to CirC’s IR, before YAP transforms the IR to OpL. Then, PEEV uses the OpL to generate the arithmetic circuit and the
R1CS. After executing the circuit, a proof is generated and verified. Finally, if the proof is valid, PEEV decrypts the result.

Generation column shows the time needed for generating the
proving and verification keys given the R1CS of a program,
whereas the Circuit Execution column shows the time needed
for performing the arithmetic operations over encrypted data
and getting the final result. The time required for generating
the proof, verifying it, and decrypting the result are listed in
the Proving, Verifying, and Decryption columns, respectively.
Finally, the last two columns show the total running times
needed for the client and the server to execute each part
of a program. Typically, a client converts the OpL into a
circuit (OpL to Circuit), generates the R1CS (Circuit&R1CS
Generation), verifies the results (Verifying), and decrypts the
result (Decryption). Meanwhile, the server will perform the
outsourced computations (Circuit Execution) and generate the
proof (Proving). We assume that a third party that maintains a
trusted environment handles the ZKP key generation process
(Rinocchio Keys Generation).

In Figure 5, we visualize running times (ms) on a logarith-
mic scale of each benchmark. The most expensive component
of the entire process is the proof generation; for Fibonacci
v64, 3× 3 matrix multiplication, sum v64, vector dot product
v32, and factorial v12, proof generation takes more than 3
seconds. However, it takes about 6 seconds for the Euclidean
distance v32 and the hamming distance v8. The time needed
for executing each circuit is short, which reflects the benefits
of SEAL as our HE back-end; the longest execution time is
about 3 seconds for the factorial program for 12 encrypted
values. The execution time of the Hamming distance program
is orders of magnitude longer than other programs due to the
fact that batching needed to be disabled to enable feasible
equality.

VI. RELATED WORK

In 2012, the authors of [2] introduced a cryptographic
primitive called delegatable homomorphic encryption (DHE)
that allows one party to delegate the computation of a circuit
with encrypted data to an untrusted party. This work was
somewhat limited, as it could only handle functions that took
one encrypted input. Moreover, the DHE architecture has four
parties involved in the process: a sender who wants to delegate
a computation; a receiver who publishes public keys for the
senders to prepare the encrypted inputs; a trusted authority
that assigns computational resources to the evaluator; and the
evaluator, who is responsible for executing the computations.
Conversely, PEEV can execute circuits with an arbitrary num-
ber of user inputs, and a trusted third party is only involved
for issuing the ZKP keys for the cloud and the client.

Another related cryptographic primitive is a homomorphic
encrypted authenticator (HEA) [35] that was proposed in 2014.
The HEA enables the construction of verifiable homomorphic
encryption that allows confirming an outsourced computation
on encrypted data. Nevertheless, homomorphic authenticators
still remain not practical because they are computationally
expensive [37, 1]. On the contrary, our framework can be
practically adopted thanks to the fast performance of our
primitives.

In 2014, Fiore et al. proposed an efficient construction
for verifiable computation (VC) that enabled authenticating
computations on encrypted data [21]. Its efficiency came from
a homomorphic hashing technique, which could verify the
computations on ciphertext data at the same cost as plaintext
data. Nevertheless, the initial generic construction introduced
efficiency issues when the FHE ciphertext space does not
match the message space supported by the VC scheme. These
challenges were later mitigated in derivative works [7].

fibonacci8 fibonacci16 fibonacci32 fibonacci64 mmul2x2 mmul3x3 sum_sqrs8 sum_sqrs16 sum_sqrs32
Program

101

102

103

104

lo
g[

ti
m

e(
m

s)
]

Running Times
Opl to Circuit Circuit&R1CS Generation Generate Rinocchio Keys Circuit Execution Proving Verifying Decryption

(a)

chi_squared sum8 sum16 sum32 sum64 dot_prod.8 dot_prod.16 dot_prod.32
Program

101

102

103

104

lo
g[

ti
m

e(
m

s)
]

Running Times
Opl to Circuit Circuit&R1CS Generation Generate Rinocchio Keys Circuit Execution Proving Verifying Decryption

(b)

euc._dist.8 euc._dist.16 euc._dist.32 factorial5 factorial8 factorial12 ham._dist.4 ham._dist.6 ham._dist.8
Program

102

103

104

lo
g[

ti
m

e(
m

s)
]

Running Times
Opl to Circuit Circuit&R1CS Generation Generate Rinocchio Keys Circuit Execution Proving Verifying Decryption

(b)

Fig. 5: Execution times of each operation in our benchmark: The vertical axis shows the time in milliseconds, while the
horizontal axis corresponds to each benchmark set.

Program Circuit
OpL to

Generation
Circuit&R1CS

Generation
Rinocchio Keys

Execution
Circuit Proving Verifying Decryption Time (ms)

Client
Time (ms)

Server

fibonacci v8 94 9 133 7 124 56 22 181 131
fibonacci v16 94 11 225 16 365 138 27 270 381
fibonacci v32 166 22 679 52 1507 724 24 936 1559
fibonacci v64 124 12 942 75 3161 1267 29 1432 3236

mmul 2x2 504 37 314 413 768 282 24 847 1181
mmul 3x3 1343 79 972 1260 3685 1346 25 2793 4945

sum sqrs v8 508 32 217 306 381 144 20 704 687
sum sqrs v16 983 61 432 616 1223 468 24 1536 1839
sum sqrs v32 1985 119 917 1329 3371 1295 23 3422 4700
chi squared 419 30 235 415 416 161 22 632 831

sum v8 317 24 153 7 137 63 23 427 144
sum v16 571 38 244 13 465 183 24 816 478
sum v32 1111 66 574 31 1335 524 24 1725 1366
sum v64 2110 123 956 53 3354 1341 27 3601 3407

dot product v8 575 67 271 360 478 178 23 843 838
dot product v16 999 59 438 627 1248 474 24 1556 1875
dot product v32 1979 112 932 1329 3304 1266 28 3385 4633
euc. distance v8 529 36 346 323 833 355 22 942 1156
euc. distance v16 1131 93 898 693 2146 802 24 2050 2839
euc. distance v32 1999 117 1434 1357 6208 2307 23 4446 7565

factorial v5 699 50 114 1233 71 35 82 866 1304
factorial v8 1016 69 134 1890 121 73 89 1247 2011

factorial v12 1790 120 246 3038 228 133 138 2181 3266
ham. dist. v4 3245 205 744 8148 2878 922 85 4457 11026
ham. dist. v6 4403 285 1377 12283 4971 1696 85 6469 17254
ham. dist. v8 5762 348 1602 14776 6890 2658 85 8853 21666

TABLE I: Execution times of PEEV across different sets of programs that include mathematical operations such as additions,
subtractions, and multiplications (all time are in milliseconds). The last two columns show the total time needed for the client
and the server, respectively. All the benchmarks use a plaintext bit size of 30 bits, a polynomial modulus degree of 211 for
Rinocchio, and 214 for SEAL, except factorial that uses a plaintext bit size of 32 bits and a polynomial modulus degree of
215 for SEAL, and hamming distance that uses a plaintext modulus value of 13 and a polynomial modulus degree of 215 for
SEAL.

In particular, the authors of [7] proposed schemes that
enabled verifying HE computations of constant multiplicative
depth. Their main goal was to allow verifiable and private
delegation of computation with three properties: privacy, in-
tegrity, and efficiency. In addition, they introduced a protocol
based on homomorphic hash functions that allows choosing
homomorphic encryption parameters flexibly. Although this
model is efficient, it needs a random oracle to become a non-
interactive protocol. Meanwhile, the choice of Rinocchio in
our PEEV framework offers support for non-interactive proofs.

In 2018, Luo et al. proposed a methodology for ensuring
the decryption correctness for BGV ciphertexts [40]. The au-
thors proposed an interactive ZK protocol to generate proofs.
However, one limitation of interactive ZKPs is the additional
communication overhead introduced, since it requires an inter-
action between the prover and the verifier. Conversely, PEEV
leverages non-interactive ZKPs, which overcomes this issue;
hence, it is more efficient in terms of the amount of data
exchanged over the network.

Finally, recent works for providing integrity with homo-
morphic encryption include verifying FHE computations by
utilizing trusted execution environments (TEEs) [17, 47, 59],
as well as verifying the integrity of a computation based
on MACs [38, 12]. Nevertheless, these approaches rely on

different approaches than our PEEV framework, which enables
both integrity and confidentiality using FHE and ZKPs.

VII. CONCLUSION

In this paper we introduce the PEEV framework for verifi-
able privacy-preserving computations. PEEV allows end users
to write programs that process encrypted data without having
extensive knowledge of cryptography, while also enabling
computations performed by a remote server to be verified.
We use the BGV scheme to encrypt and process the end
user’s data, as well as zk-SNARKs for generating proofs; in
particular, PEEV employs Microsoft SEAL as its homomor-
phic encryption back-end and Rinocchio as its ZKP system.
To realize PEEV, we introduce the bespoke YAP parser that
enables translation from a high-level language into our OpL
intermediate representation. The OpL syntax is characterized
by its simplicity and readability, which makes it easy to parse
in different FHE libraries, as well as extend with new oper-
ations. To evaluate the efficiency of our system, we employ
26 encrypted programs, and report low performance overheads
both for encrypted computation and proof generation.

REFERENCES

[1] Alexandros Bampoulidis et al. “Privately connecting
mobility to infectious diseases via applied cryptogra-
phy”. In: arXiv preprint arXiv:2005.02061 (2020).

[2] Manuel Barbosa and Pooya Farshim. “Delegatable ho-
momorphic encryption with applications to secure out-
sourcing of computation”. In: Topics in Cryptology–
CT-RSA 2012: The Cryptographers’ Track at the RSA
Conference 2012, San Francisco, CA, USA, Febru-
ary 27–March 2, 2012. Proceedings. Springer. 2012,
pp. 296–312.

[3] Eli Ben-Sasson et al. “Scalable zero knowledge with
no trusted setup”. In: Advances in Cryptology–CRYPTO
2019: 39th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part III 39. Springer. 2019, pp. 701–732.

[4] Eli Ben-Sasson et al. “SNARKs for C: Verifying pro-
gram executions succinctly and in zero knowledge”. In:
Advances in Cryptology–CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2013. Proceedings, Part II. Springer. 2013,
pp. 90–108.

[5] Ayoub Benaissa et al. TenSEAL: A Library for En-
crypted Tensor Operations Using Homomorphic En-
cryption. 2021. arXiv: 2104.03152 [cs.CR].

[6] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-
interactive zero-knowledge and its applications”. In:
Proceedings of the twentieth annual ACM symposium
on Theory of computing. 1988, pp. 103–112.

[7] Alexandre Bois et al. “Flexible and efficient verifi-
able computation on encrypted data”. In: IACR In-
ternational Conference on Public-Key Cryptography.
Springer. 2021, pp. 528–558.

[8] Charlotte Bonte et al. FINAL: Faster FHE instantiated
with NTRU and LWE. Cryptology ePrint Archive, Paper
2022/074. https://eprint.iacr.org/2022/074. 2022.

[9] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. “(Leveled) fully homomorphic encryption
without bootstrapping”. In: ACM Transactions on Com-
putation Theory (TOCT) 6.3 (2014), pp. 1–36.

[10] Benedikt Bünz et al. “Bulletproofs: Short Proofs
for Confidential Transactions and More”. In: 2018
IEEE Symposium on Security and Privacy (SP). 2018,
pp. 315–334. DOI: 10.1109/SP.2018.00020.

[11] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey.
“Armadillo: a compilation chain for privacy preserv-
ing applications”. In: Proceedings of the 3rd Interna-
tional Workshop on Security in Cloud Computing. 2015,
pp. 13–19.

[12] Sylvain Chatel et al. “Verifiable encodings for se-
cure homomorphic analytics”. In: arXiv preprint
arXiv:2207.14071 (2022).

[13] Hao Chen, Ilaria Chillotti, and Yongsoo Song. “Im-
proved bootstrapping for approximate homomorphic
encryption”. In: Annual International Conference on the

Theory and Applications of Cryptographic Techniques.
Springer. 2019, pp. 34–54.

[14] Jung Hee Cheon et al. “Homomorphic encryption for
arithmetic of approximate numbers”. In: Advances in
Cryptology–ASIACRYPT 2017: 23rd International Con-
ference on the Theory and Applications of Cryptology
and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer. 2017,
pp. 409–437.

[15] Ilaria Chillotti et al. “Faster fully homomorphic en-
cryption: Bootstrapping in less than 0.1 seconds”. In:
Advances in Cryptology–ASIACRYPT 2016: 22nd Inter-
national Conference on the Theory and Application of
Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part I 22. Springer.
2016, pp. 3–33.

[16] Ilaria Chillotti et al. “TFHE: fast fully homomorphic
encryption over the torus”. In: Journal of Cryptology
33.1 (2020), pp. 34–91.

[17] Luigi Coppolino et al. “Vise: Combining intel sgx and
homomorphic encryption for cloud industrial control
systems”. In: IEEE Transactions on Computers 70.5
(2020), pp. 711–724.

[18] Victor Costan, Ilia Lebedev, and Srinivas Devadas.
“Sanctum: Minimal hardware extensions for strong soft-
ware isolation”. In: 25th USENIX Security Symposium
(USENIX Security 16). 2016, pp. 857–874.

[19] Adrian J Duncan, Sadie Creese, and Michael Goldsmith.
“Insider attacks in cloud computing”. In: 2012 IEEE
11th international conference on trust, security and
privacy in computing and communications. IEEE. 2012,
pp. 857–862.

[20] Junfeng Fan and Frederik Vercauteren. Somewhat Prac-
tical Fully Homomorphic Encryption. Cryptology ePrint
Archive, Paper 2012/144. https://eprint.iacr.org/2012/
144. 2012.

[21] Dario Fiore, Rosario Gennaro, and Valerio Pastro.
“Efficiently verifiable computation on encrypted data”.
In: Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security. 2014,
pp. 844–855.

[22] Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-
Vazquez. Rinocchio: SNARKs for Ring Arithmetic.
Cryptology ePrint Archive, Paper 2021/322. https : / /
eprint.iacr.org/2021/322. 2021.

[23] Craig Gentry. “Fully homomorphic encryption using
ideal lattices”. In: Proceedings of the forty-first an-
nual ACM symposium on Theory of computing. 2009,
pp. 169–178.

[24] Craig Gentry, Shai Halevi, and Nigel P Smart. “Better
bootstrapping in fully homomorphic encryption”. In:
International Workshop on Public Key Cryptography.
Springer. 2012, pp. 1–16.

[25] Shafi Goldwasser, Silvio Micali, and Chales Rack-
off. “The knowledge complexity of interactive proof-
systems”. In: Providing sound foundations for cryp-

tography: On the work of shafi goldwasser and silvio
micali. 2019, pp. 203–225.

[26] Shruthi Gorantala et al. A General Purpose Transpiler
for Fully Homomorphic Encryption. Cryptology ePrint
Archive, Paper 2021/811. https://eprint.iacr.org/2021/
811. 2021.

[27] Charles Gouert, Dimitris Mouris, and Nektarios Geor-
gios Tsoutsos. HELM: Navigating Homomorphic En-
cryption through Gates and Lookup Tables. Cryptology
ePrint Archive, Paper 2023/1382. https://eprint.iacr.org/
2023/1382. 2023.

[28] Charles Gouert, Dimitris Mouris, and Nektarios Geor-
gios Tsoutsos. “SoK: New Insights into Fully Homo-
morphic Encryption Libraries via Standardized Bench-
marks”. In: Proceedings on Privacy Enhancing Tech-
nologies 2023.3 (July 2023), pp. 154–172. DOI: 10 .
56553/popets-2023-0075.

[29] Ioannis Grigoriadis et al. “Machine Learning as a
Service (MLaaS)—An Enterprise Perspective”. In: Pro-
ceedings of International Conference on Data Science
and Applications: ICDSA 2022, Volume 2. Springer.
2023, pp. 261–273.

[30] Shai Halevi and Victor Shoup. “Design and implemen-
tation of HElib: a homomorphic encryption library”. In:
Cryptology ePrint Archive (2020).

[31] Raja Mohamed Jabir et al. “Analysis of cloud com-
puting attacks and countermeasures”. In: 2016 18th
international conference on advanced communication
technology (ICACT). IEEE. 2016, pp. 117–123.

[32] Wonkyung Jung et al. “Over 100x faster bootstrapping
in fully homomorphic encryption through memory-
centric optimization with gpus”. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems
(2021), pp. 114–148.

[33] Vladimir Kiriansky et al. “DAWG: A defense against
cache timing attacks in speculative execution pro-
cessors”. In: 2018 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO).
IEEE. 2018, pp. 974–987.

[34] Anatoly Konkin and Sergey Zapechnikov. “Zero knowl-
edge proof and ZK-SNARK for private blockchains”.
In: Journal of Computer Virology and Hacking Tech-
niques (2023), pp. 1–7.

[35] Junzuo Lai et al. “Verifiable computation on outsourced
encrypted data”. In: Computer Security-ESORICS 2014:
19th European Symposium on Research in Computer
Security, Wroclaw, Poland, September 7-11, 2014. Pro-
ceedings, Part I 19. Springer. 2014, pp. 273–291.

[36] Lattigo v4. Online: https : / / github . com / tuneinsight /
lattigo. EPFL-LDS, Tune Insight SA. Aug. 2022.

[37] Shimin Li, Xin Wang, and Rui Xue. “Toward Both
Privacy and Efficiency of Homomorphic MACs for
Polynomial Functions and Its Applications”. In: The
Computer Journal 65.4 (2022), pp. 1020–1028.

[38] Shimin Li, Xin Wang, and Rui Zhang. “Privacy-
Preserving Homomorphic MACs with Efficient Verifica-

tion”. In: Web Services–ICWS 2018: 25th International
Conference, Held as Part of the Services Conference
Federation, SCF 2018, Seattle, WA, USA, June 25-30,
2018, Proceedings 16. Springer. 2018, pp. 100–115.

[39] Fangfei Liu et al. “Catalyst: Defeating last-level cache
side channel attacks in cloud computing”. In: 2016
IEEE international symposium on high performance
computer architecture (HPCA). IEEE. 2016, pp. 406–
418.

[40] Fucai Luo and Kunpeng Wang. “Verifiable decryption
for fully homomorphic encryption”. In: International
Conference on Information Security. Springer. 2018,
pp. 347–365.

[41] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and
Maxime Plançon. “Lattice-based zero-knowledge proofs
and applications: shorter, simpler, and more gen-
eral”. In: Annual International Cryptology Conference.
Springer. 2022, pp. 71–101.

[42] Vadim Lyubashevsky, Chris Peikert, and Oded Regev.
“On ideal lattices and learning with errors over rings”.
In: Advances in Cryptology–EUROCRYPT 2010: 29th
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, French Riviera,
May 30–June 3, 2010. Proceedings 29. Springer. 2010,
pp. 1–23.

[43] Ganesh Kumar Mahato and Swarnendu Kumar
Chakraborty. “A comparative review on homomorphic
encryption for cloud security”. In: IETE Journal of
Research 69.8 (2023), pp. 5124–5133.

[44] Mohammad Masdari and Marzie Jalali. “A survey and
taxonomy of DoS attacks in cloud computing”. In:
Security and Communication Networks 9.16 (2016),
pp. 3724–3751.

[45] Dimitris Mouris and Nektarios Georgios Tsoutsos.
“Zilch: A framework for deploying transparent zero-
knowledge proofs”. In: IEEE Transactions on Informa-
tion Forensics and Security 16 (2021), pp. 3269–3284.

[46] Dimitris Mouris, Nektarios Georgios Tsoutsos, and
Michail Maniatakos. “TERMinator Suite: Benchmark-
ing Privacy-Preserving Architectures”. In: IEEE Com-
puter Architecture Letters 17.2 (2018), pp. 122–125.
DOI: 10.1109/LCA.2018.281281.

[47] Deepika Natarajan et al. “Chex-mix: Combining homo-
morphic encryption with trusted execution environments
for two-party oblivious inference in the cloud”. In:
Cryptology ePrint Archive (2021).

[48] Alex Ozdemir, Fraser Brown, and Riad S. Wahby. CirC:
Compiler infrastructure for proof systems, software ver-
ification, and more. Cryptology ePrint Archive, Paper
2020/1586. https://eprint.iacr.org/2020/1586. 2020.

[49] Harikumar Pallathadka et al. “An investigation of var-
ious applications and related challenges in cloud com-
puting”. In: Materials Today: Proceedings 51 (2022),
pp. 2245–2248.

[50] Panagiotis Papadopoulos et al. “If you are not paying
for it, you are the product: How much do advertisers

pay to reach you?” In: Proceedings of the 2017 Internet
Measurement Conference. 2017, pp. 142–156.

[51] Francisco José Garcı́a Peñalvo et al. “Mobile cloud
computing and sustainable development: Opportunities,
challenges, and future directions”. In: International
Journal of Cloud Applications and Computing (IJCAC)
12.1 (2022), pp. 1–20.

[52] Oded Regev. “On lattices, learning with errors, random
linear codes, and cryptography”. In: Journal of the ACM
(JACM) 56.6 (2009), pp. 1–40.

[53] Urvashi Rahul Saxena and Taj Alam. “Role-based ac-
cess using partial homomorphic encryption for secur-
ing cloud data”. In: International Journal of System
Assurance Engineering and Management 14.3 (2023),
pp. 950–966.

[54] Microsoft SEAL (release 4.1). https : / / github . com /
Microsoft/SEAL. Microsoft Research, Redmond, WA.
Jan. 2023.

[55] Xiaoqiang Sun et al. “A survey on zero-knowledge
proof in blockchain”. In: IEEE network 35.4 (2021),
pp. 198–205.

[56] Nassima Toumi, Miloud Bagaa, and Adlen Ksentini.
“Machine Learning for Service Migration: A Survey”.
In: IEEE Communications Surveys & Tutorials (2023).

[57] Alexander Viand, Christian Knabenhans, and Anwar
Hithnawi. “Verifiable fully homomorphic encryption”.
In: arXiv preprint arXiv:2301.07041 (2023).

[58] S Vinoth et al. “Application of cloud computing in
banking and e-commerce and related security threats”.
In: Materials Today: Proceedings 51 (2022), pp. 2172–
2175.

[59] Wenhao Wang et al. “Toward scalable fully homomor-
phic encryption through light trusted computing assis-
tance”. In: arXiv preprint arXiv:1905.07766 (2019).

[60] Wenjing Yin. “Zero-Knowledge Proof Intelligent Rec-
ommendation System to Protect Students’ Data Privacy
in the Digital Age”. In: Applied Artificial Intelligence
37.1 (2023), p. 2222495.

[61] Zama. Concrete: TFHE Compiler that converts python
programs into FHE equivalent. https : / / github . com /
zama-ai/concrete. 2022.

[62] Zama. TFHE-rs: A Pure Rust Implementation of the
TFHE Scheme for Boolean and Integer Arithmetics
Over Encrypted Data. https://github.com/zama-ai/tfhe-
rs. 2022.

