
Tyche: Probabilistic Selection over Encrypted
Data For Generative Language Models

Lars Folkerts and Nektarios Georgios Tsoutsos

University of Delaware, Newark, DE, USA
folkerts@udel.edu tsoutsos@udel.edu

Abstract. Generative AI, a significant technological disruptor in recent
years, has impacted domains like augmented reality, coding assistance,
and text generation. However, use of these models requires users to trust
the model owners with their sensitive data given as input to the model.
Fully Homomorphic Encryption (FHE) offers a promising solution, and
many earlier works have investigated the use this technology for ma-
chine learning as a service (MLaaS) applications. Still, these efforts do
not cater to generative models which operate probabilistically, allow-
ing for diverse and creative outputs. In this work, we introduce three
novel probabilistic selection algorithms for autoregressive generative AI:
multiplication-scaled cumulative sum, heuristic cumulative sum, and the
random-multiplication argmax. Each of these approaches presents dis-
tinctive challenges in optimizing the trade-off between precision and tim-
ing performance, a balance intricately tied to the specific characteristics
of the data under consideration. Our results show that the random mul-
tiplication argmax-based method is more scalable than the cumulative
sum methods and can accurately mimic the plaintext selection curve.

Keywords: Fully Homomorphic Encryption · Private Language Models
· Generative AI.

1 Introduction

Over the past decade, generative AI has become a significant disruptor for mod-
ern technology, offering automated solutions for content generation and data
processing. Many utilize this technology for increased efficiency and productiv-
ity in their day-to-day work, and new professions have been created for those
skilled at using these models. It has gained widespread recognition and piqued
considerable interest as a foundational technology in today’s rapidly evolving
landscape [25, 47, 49].

Generative AI operates probabilistically, employing statistical models to gen-
erate new data that loosely resemble a given training dataset. At its core, an
autoregressive generative model functions by iteratively generating output to-
kens one at a time [14]. Given an input prompt, the model generates a set of
probabilities corresponding to the next possible output token. It then randomly
selects the next token based on these probabilities and appends it to the input

2 Lars Folkerts and Nektarios Georgios Tsoutsos

Fig. 1: Generative Language Models: In generative models, the process of
selecting the most likely next token can be simplified into the four steps shown in
this figure. Our research primarily addresses the latter two phases: Final Activa-
tion/Normalization and Probabilistic Selection. A discussion on how generative
models work is presented in Section 2.1, and the associated steps are numbered
in this figure.

for the subsequent iteration. The generative AI model gradually constructs a
coherent and realistic output sequence by repeating this iterative process.

The inherent probabilistic nature of generative AI is a key factor contributing
to its ability to produce diverse and creative outputs. The randomness introduced
during the token selection stage ensures that the model does not adhere strictly
to a single predefined path. Instead, it explores different possibilities within
the learned probability distributions, allowing for the generation of novel and
imaginative content, leading to diverse applications [55, 49].

Nevertheless, the privacy of generative AI systems remains a significant bar-
rier to their widespread adoption. For example, Deutsche Bank stated “On Chat-
GPT specifically, like other banks we have currently blocked the website while
we evaluate how to best use these types of capabilities while also ensuring the
security of our and our client’s data. So it is protection against data leakage,
rather than a view on how useful the tool is” [15]. Several prominent companies,
including Amazon, Apple, Northrop Grumman, Samsung, Verizon, and various
major banks, have banned the use of ChatGPT due to concerns regarding the
security and confidentiality of code and customer data [15, 56, 26].

Fully Homomorphic Encryption (FHE) offers a promising solution for pre-
serving privacy in machine learning applications through its ability to perform
computations directly on encrypted data. This exceptional capability allows
users to securely delegate computations to a cloud service provider by sending
encrypted ciphertexts, which prevents the provider from accessing any informa-
tion about the original plaintext. The cloud performs the computations on the
encrypted data and returns the encrypted result to the users, who can ultimately
decrypt it to obtain the plaintext outcome.

Exciting progress is being made in the realm of FHE for Machine Learning
as a Service (MLaaS) scenarios, particularly toward lowering the high compu-
tational costs. Notably, within the past five years, the state-of-the-art AlexNet
architecture for ImageNet [31] classification has seen a substantial improvement
in computation time, reducing from an extrapolated period of over two years in

Tyche: Encrypted Probabilistic Selection 3

2019 [38] to a matter of hours by 2023 [1, 19]. These costs have been thanks to
ongoing algorithmic enhancements and optimized software libraries.

Nevertheless, when it comes to building FHE-GPTs, several open challenges
remain. A recent article by Zama AI estimated that the cost of generating a single
output token (such as a word) using Chat-GPT homomorphically would amount
to approximately $5000 USD [24]. While this prediction poses major limitations,
there is optimism that advancements in several key areas will contribute to cost
reduction. Continued compression of large language models (LLMs), ongoing
improvements in FHE algorithms, and the emergence of dedicated FHE hardware
promise to drive down these costs substantially.

This work marks an initial stride towards realizing practical generative ma-
chine learning models by assessing multiple techniques for cloud-based encrypted
value selection from a set of neural network outputs. This endeavor tackles two
unresolved challenges in the realm of machine learning: (a) the normalization of
neural network outputs and (b) the retrieval of probabilistic information. The
first challenge entails finding an efficient encrypted counterpart to the softmax
function, facilitating the normalization of inputs into probability distributions
that sum to 1. The second challenge involves probabilistic information retrieval,
where given probabilities p1 to pn, token1 is selected p1 percent of the time,
and so forth. Finally, we combine our contributions with several multi-layer
perception-based networks to demonstrate the possibility of achieving encrypted
generative AI.

Our contributions extend to a diverse set of innovative methodologies aimed
at enhancing the probabilistic selection process within encrypted generative ma-
chine learning. For each of these techniques, we conduct a comprehensive analysis
to evaluate their scalability with respect to algorithmic complexity and the re-
quired integer precision, a significant factor influencing the timing performance
of FHE. Furthermore, we assess the potential bias introduced from precision lim-
itations and optimizations in FHE. To validate the efficacy of these approaches,
we perform empirical evaluations employing text-based generative models that
operate on letters. These evaluations encompass measurements of timing and
the assessment of loss degradation across various character sets.

2 Background

2.1 Generative AI

At the core of generative ML is the concept of probability. The goal is to model
the probability distribution of the training data, allowing the algorithm to gen-
erate new samples that are likely to occur in the real world. These models can be
used to create realistic images, text, audio, and even entire virtual environments.
There are several techniques and architectures used in generative ML, each with
its own strengths and limitations. Some of the popular approaches include Vari-
ational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and
Autoregressive models [14].

4 Lars Folkerts and Nektarios Georgios Tsoutsos

In this work, we focus on autoregressive generative inference, which is widely
used in various applications, including text generation, image synthesis, hand-
writing generation, and speech synthesis. It encompasses various approaches such
as Google’s PixelCNN [44] for images, as well as Bidirectional Encoder Represen-
tations from Transformers (BERT) [16] and Generative Pretrained Transformers
(GPTs) [48] for large language models. Autoregressive models involve utilizing
neural networks to predict the next token (such as a pixel, word, or letter) based
on previous inputs. The autoregressive approach leverages the sequential nature
of the data, allowing the neural network model to capture dependencies and
generate coherent and contextually appropriate predictions. For example, in the
case of language models like BERT and GPT, the model predicts the next word
in a sentence based on the preceding words, taking into account the syntactic
and semantic context. Similarly, in PixelCNN, the model predicts the next pixel
in an image based on the previously generated pixels, capturing local patterns
and structures. The inference server can then select the token based on these
probabilities and iterate the process by feeding the selected token back into the
model for generating subsequent predictions.

We show an overview of generative language models in Figure 1. There are
four najor steps:

1. Token Embedding: Initially, a token embedding table is employed to trans-
form a one-hot vocabulary vector into a lower-dimensional token embedding
representation.

2. ML Model Processing: In the second step, the data is processed using a
machine learning model, which could be a transformer-based architecture or
a simpler neural network, depending on the application. Here we assume the
output of this step is encoded as a vector v, with each value corresponding
to a unique output token k.

3. Final Activation/Normalization: The third step involves converting the neu-
ral network’s output (denoted as v), into an intermediate post-activation
values (donated as a), and finally into a normalized probability vector (de-
noted as p). This is achieved by first applying an activation function, before
ensuring that the sum of the outputs equals one, creating a valid probability
distribution. In the plaintext domain, softmax is typically used for this step,
which combines the sigmoid activation and normalization steps.

4. Probabilistic Selection: In the final step, a token, denoted as kout is chosen
based on the encrypted probabilities. The selected token can then be fed
back into the network for subsequent iterations.

The neural network architectures can vary, with transformers becoming in-
creasingly dominant. In our work, we aim to address the challenges and impli-
cations associated with secure probabilistic inference rather than exploring the
nuances of efficient neural network architectures, which falls outside the scope
of our study. Hence, our primary emphasis is on encrypted probability selection,
encompassing the final two steps of converting outputs into encrypted probabil-
ities, as well as making selections based on these encrypted probabilities.

Tyche: Encrypted Probabilistic Selection 5

2.2 Fully Homomorphic Encryption (FHE)

Overview. Fully Homomorphic Encryption (FHE) is a class of cryptographic
techniques that enables a cloud server to perform computations on encrypted
data without the need to decrypt it. FHE schemes usually have four key compo-
nents: key generation, encryption and decryption algorithms, a set of homomor-
phic operations, and a bootstrapping operation for lattice-based homomorphic
schemes. The key generation process includes the creation of three types of keys:
public keys, secret keys, and bootstrapping keys. This key generation step is
typically performed by the client and is a one-time computationally intensive
setup [33, 9, 28].

During encryption, the public key is used to transform a plaintext message
into a many-dimensional ciphertext. In particular, the security of the FHE trans-
formation often relies on hard problems such as LWE [50, 51] and Ring-LWE [39].
Here, some noise is added to the ciphertext to make it cryptographically hard
for an attacker to reverse the plaintext-ciphertext mapping. Only a user with a
secret key should be able to decrypt the message.

During homomorphic operations, ciphertexts can be manipulated to preserve
the meaningfulness of the underlying plaintext. In particular, homomorphic addi-
tion and multiplication directly operate on the encrypted data, generating a new
output ciphertext; when decrypted using the secret key, the resulting plaintext
corresponds to the desired addition or multiplication computation. This property
is what makes the encryption scheme “homomorphic.” However, each homomor-
phic operation contributes to noise accumulation in the resulting ciphertexts. If
a large number of operations are performed sequentially, the accumulated noise
in the ciphertexts may hinder the successful decryption of the data [9].

The bootstrapping operation offers a noise reduction that mitigates this prob-
lem. Here, the bootstrapping key can be viewed by the cloud server as the
encryption of the secret key. Therefore, the cloud can perform homomorphic
decryption and re-encryption, resulting in a new ciphertext with significantly
reduced noise. Bootstrapping can be applied repeatedly to facilitate limitless
computational depth. However, bootstrapping is computationally expensive and
remains the bottleneck for FHE implementations [9, 10].
Homomorphic Cryptosystems and Libraries. BFV [18] and CKKS [7] are
two prominent and closely related homomorphic encryption schemes. They are
supported by both IBM’s HeLIB [23] and Microsoft’s SEAL [54] libraries and
have the ability to offer integer or fixed-point operations for both real and com-
plex numbers. For neural network implementations, these schemes use polyno-
mial approximations of non-linear functions (e.g., ReLU), which require special
retraining. The benefit of these cryptosystems is that they support a compres-
sion technique called packing, where multiple values can be encoded in a single
ciphertext to increase the throughput of homomorphic operations [3]. However,
in this case bootstrapping operations are impractically slow [35], and therefore
are not supported in SEAL [32]. Likewise, many BFV and CKKS algorithmic
implementations do not use bootstrapping, which is referred to as leveled homo-
morphic encryption (LHE) [1, 34]. Instead, they adjust the FHE parameters to

6 Lars Folkerts and Nektarios Georgios Tsoutsos

handle extra noise, which can reduce latency can increase computation/memory
costs.

TFHE is a cryptographic scheme that builds upon the foundations of GSW
and its ring variants [8]. It has undergone further advancements and enhance-
ments to become the Concrete Library [57]. TFHE operates on either bits or
integers and has an efficient bootstrapping process that can be performed on
a scale of milliseconds, which allows for deeper neural networks to be imple-
mented. Our work evaluates the proposed probabilistic selection methods using
the TFHE scheme.

2.3 FHE Algorithms

PPML. The fully homomorphic privacy-preserving machine learning (PPML)
field has experienced rapid advancement and innovation. In its early stages,
initial efforts were confined to shallow neural networks like MNIST. Notably,
the SHE technique, introduced in 2019 by Lou and Jiang [38], projected that
executing a fully homomorphic AlexNet architecture using TFHE would require
over two years. However, in a remarkable four-year span, REDsec [19] managed
to accomplish fully homomorphic inference on AlexNet in a mere 1.64 hours.

Despite significant progress in PPML over the recent years, it still remains
challenging to implement complex functions homomorphically. First, although
the fully connected and convolutional layers have made significant strides in
achieving efficient FHE implementations within the integer domain, precision
continues to pose limitations. Several libraries, such as REDsec, TAPAS [52],
and SHE, have directed their focus toward optimizing efficiency through the
use of ternary and binary weights. Additionally, the Concrete-ML library delves
into the realm of low-precision weights, ranging from 2 to 8 bits. Employing
FHE simulation, this library provides users the flexibility to strike an optimal
equilibrium between accuracy and timing while determining the suitable bit
width for their specific use case.

Second, the challenge of computing non-linear activation functions over FHE
data constitutes another significant hurdle. In the BFV and CKKS schemes,
approximations using the Taylor series are frequently employed, or alternative
activation functions are adopted, where the simple f(x) = x2 stands out as a
prominent choice [20]. In TFHE-based solutions, network architects are able to
utilize standard activation functions through a variety of techniques. REDsec
introduces bidirectional bridging, a mechanism that transforms integer cipher-
texts into encrypted bits; this approach facilitates logic gate implementations
of the sign activation function (extracting the negated sign bit) and the ReLU
function (performing an AND operation with the negated sign bit and other
bits). On the other hand, Concrete introduces an alternative strategy termed
programmable bootstrapping (PBS) [10], which empowers users to embed uni-
variate functions within a lookup table. This innovation enables the evaluation
of Sigmoid, Tanh, and ReLU functions. In our work, we utilize the more TFHE-
friendly “hard sigmoid” approximation, illustrated in Figure 3d. However, this

Tyche: Encrypted Probabilistic Selection 7

approach introduces quantization and precision errors that correlate with the
programmable bootstrapping lookup table size.

Moreover, the homomorphic computation of the encrypted maximum of two
values is possible yet inefficient. This limitation has implications for both Max-
Pooling operations and the determination of output classifications, where iden-
tifying the highest output value becomes challenging. In the context of FHE-
PPML, MaxPooling is often circumvented: for instance, Concrete-ML [40], in its
version 1.1, lacks MaxPooling support, while REDsec only offers it following a
sign activation function. These libraries advocate for the use of SumPooling or
AveragePooling instead, albeit at the cost of some accuracy degradation.

Lastly, handling the division of one encrypted number by another encrypted
number represents another intricate challenge. In classification tasks, the need for
output normalization is not always imperative; the classification outcome can be
determined by locating the maximum value. In almost all cases, the responsibility
of performing these calculations is delegated to the user post-decryption [19,
38, 40], which effectively renders normalization unnecessary for classification.
While this lack of normalization might not considerably impact classification
tasks, it does raise significant concerns when grappling with the intricacies of
the probabilistic selection problem – a key feature of generative ML and the core
area of focus in our investigation. In this context, normalizing outputs becomes
crucial, and this paper delves into methodologies designed to tackle this intricate
problem, thereby extending the applicability of fully homomorphic encryption
into a broader range of machine learning tasks.

ArgMax. The argmax function returns the index of the maximum value in an
array, where the closely related argkmax returns the index of the kth largest
value in an array. In general, argmax is not considered FHE-friendly since it
requires many encrypted comparisons, a costly operation. Most PPML classifi-
cation works do not perform argmax but instead leave it for the user. Although
this approach reduces computation time, it amplifies network bandwidth usage
and escalates the vulnerability to model intellectual property theft via black box
attacks.

Nevertheless, there is a body of research that covers both argkmax and
argmax for TFHE. Notable results in this area include the works by Zuber [59]
and Sirdey et. al. [22], later improved by Cong et. al. [12]. These approaches
employ the argkmax’s sibling, argkmin, for K-nearest neighbor. Overall, they
propose two core algorithms: one on that features counting true comparisons,
and the second that performs sorting using the batcher sort algorithm.

In our approach, we also employ the batcher-sort network for argmax, also
known as the tournament method. Here, pairs of elements are compared and
swapped until the max and argmax are found. This has computational complex-
ity O(n), but can be vectorized to run in O(log(n)). This argmax is the same
as the above works, but we implemented ours in the Concrete library instead of
TFHE-rust, a lower-level version.

8 Lars Folkerts and Nektarios Georgios Tsoutsos

(a) Cumulative Sum Plaintext
Probabilistic Selection

(b) Multiplication Cumulative Sum
Method Scaling

Fig. 2: Cumulative Sum: To select elements with probabilities proportional
to their values, we use cumulative sums. In a plaintext implementation (left
side), we generate a random number within the range of 0 to the sum of the
original vector. In an encrypted domain, where we don’t know the sum of the
original vector, we employ a multiplication method (right side) with a fixed
value, Randmax, to generate a range of random numbers spanning the array.

3 Threat Model
Our work addresses the most prevalent scenario in privacy preserving machine
learning, where a cloud service provider possesses a model, and users pay to
upload their individual inputs and receive generated results from the cloud. An
additional layer of complexity arises from the autoregressive generative model
paradigm, which requires the cloud to iteratively return model outputs as inputs
to the neural network for subsequent iterations.

The central focus of our approach revolves around the protection of user
data privacy at the outset, as well as the safeguarding of proprietary network
characteristics within the cloud, including model weights and biases. To establish
a clear threat model, we operate under the assumption of an honest-but-curious
cloud provider that faithfully executes operations on encrypted data but has an
incentive to eavesdrop on user data; we also defend against external adversaries
to attempt to steal the user data through cyberattacks on the server or the
network links.

4 Our Proposed Approaches for Cumulative Sum
In this section we introduce two methods for probabilistic selection based on
the cumulative sum operation, while our third method based on the argmax
operation is discussed on Section 5. For each proposed algorithm, we address
the issues of normalization, precision, and bias.

The cumulative sum method enables us to normalize output values, since
there is no efficient method to perform division by an encrypted value in TFHE.
The basic steps of the cumulative sum are as follows, using the example of Fig.
2a:

1. Activation: This step assumes all values are non-negative, although not
necessarily normalized. Typically this is done with the softmax function in
neural networks, which is a normalized sigmoid function. In the encrypted
domain, a hard sigmoid can be used as an approximation to sigmoid. In

Tyche: Encrypted Probabilistic Selection 9

our approach, we use the hard sigmoid activation function to transform the
values into non-negative.

2. Cumulative Sum: This step calculates the cumulative sum of the post-
activation neural network output values. While this operation is sequential,
addition is very efficient in FHE.

3. Random Number Generation: The plaintext version of this algorithm
would generate a random number between 0 and the sum of neural network
output values, which can be taken from the previous step. However, using
FHE this sum is encrypted, which brings a new challenge on how we can
approximate the random number generation.

4. Comparison: In this step, we run an encrypted comparison of the random
number with each index in the cumulative sum array. If the cumulative sum
is less than the random number, we return 1, otherwise 0. This operation is
vectorized.

5. Summation: Finally, we conclude the process by summing the comparison
output, yielding the (encrypted) index of the token ki, which can subse-
quently be reintroduced into the neural network. Notably, for networks that
require one-hot vector inputs, we can subtract the comparison output shifted
by one position from the original comparison output, deriving the desired
one-hot vector.

In theory, this methodology would provide an unbiased way for encrypted
probabilistic selection. However, three main issues prevent this algorithm’s suc-
cess in the encrypted domain. First, some form of normalization is needed. In
the plaintext algorithm, this manifests in selecting a random number between 0
and the sum of these values, which is already calculated as the last index of the
cumulative sum. However, when the value of the sum is encrypted, generating a
random number from 0 to this encrypted sum is no longer possible. Therefore,
our two proposed cumulative sum methods differ on the way this is achieved.
Second, a bias may be introduced from approximation, rounding and precision
errors, and for each method, we evaluate this bias. Lastly, FHE computation
suffers from precision problems, requiring users to choose between accuracy
and computational complexity. Therefore, careful tuning is required to obtain
the optimal balance of these two constraints.

4.1 Multiplication-Scaled Cumulative Sum

Methodology. The main challenge to tackle for the cumulative sum method is
generating a random number between 0 and the maximum value of the encrypted
cumulative sum array, which we denote as Rideal = rand(0, Cumsummax). In
the multiplication-scaled method, we first select a fixed range for the random
number, where Rfixed = rand(0, Randmax). In the encrypted domain, we can
then enforce the scale to be the product of the maximum possible random value
and the maximum value of the array, Cumsummax · Randmax. This is done by
multiplying each value of the cumsum array by Randmax, and by multiplying
our random number by Rscaled = Rfixed · Cumsummax.

10 Lars Folkerts and Nektarios Georgios Tsoutsos

Normalization. This method achieves normalization by adjusting the scale as
described above. This normalizes the output and random number to Cumsummax·
Randmax.

Bias. In a plaintext version of this algorithm with floating point precision or
significantly large values of Randmax, there is little bias since the cumulative
sum operates a normalization alternative. However, in the encrypted domain
with a small, low precision value of Randmax, the heavy discretization of the
random variables introduces a bias.

Figure 2b illustrates an example of such bias. The possible values for Rscaled

are {0, 10, 20, 30...150}. This leads to probabilities of { 2
16 , 8

16 , 3
16 , 3

16}, which
are slightly skewed from the original { 1

10 , 5
10 , 2

10 , 2
10}. Such patterns in the data

will cause consistent skew toward certain indexes, and will always increase the
likelihood of the first index. To prevent these patterns in the data, we propose
shuffling the order of the array before applying the cumulative sum. In FHE, we
can recover the original index with a simple private information retrieval (PIR)
lookup in O(n) time.

Finally, there is a natural smoothing effect that comes from a combination
of rounding and the hard sigmoid approximation set to 0. This creates a long
tail effect that does not scale for large datasets, as each 0 value has a smoothing
value of 1/(N ·Randmax).

Precision and Complexity. This method has O(n) multiplications, O(n) ad-
ditions and O(n) comparisons, where n is the vocabulary size (i.e., the number
of possible tokens). However, the cumulative sum operation requires high preci-
sion to begin with, and multiplying by Randmax only increases this need. Fur-
thermore, Randmax cannot be a static value. To prevent bias, Randmax should
increase with cumulative sum. The precision, representing the number of bits
required to represent the largest number, is O(log(Randmax) + log(n)) bits, so
the evaluation times using FHE are less scalable to larger datasets.

Experimental Characterization. In Figure 3a, we present two examples of
probability distributions for the encrypted cumulative sum multiplication-scaled
method vs. its plaintext counterparts. For the plaintext case, we sorted the
output tokens by their selection frequency, and compare with the cumulative sum
equivalent distribution for the same ordering. In the average case, we observe that
our model could not achieve a very high selection probabilities; specifically, we
observe a shelf (around 0.16) indicating discretization (i.e., ML outputs rounded
to the same value). For the worst case, all neural network outputs are discretized
to 0, creating a uniform distribution instead of the desired distribution.

Both of these test cases could potentially be enhanced as the proficiency of the
Concrete library toward handling higher precision inputs improves. Nevertheless,
it’s crucial to note that this approach exhibits a substantial appetite for precision,
making it less favorable in comparison to other algorithms that demand fewer
precision-intensive resources.

Tyche: Encrypted Probabilistic Selection 11

4.2 Heuristic Cumulative-Sum

Methodology. This method avoids scaling the random multiplier by the sum of
post-activation ML outputs, but instead approximates Randmax to be based on
data set heuristics. We assume that the dataset is randomly shuffled, as described
in the multiplication-scaled cumulative sum method.

Normalization. Our pseudo-norm is based on heuristics and is not exactly
normalized. If the Randmax constant is too small in this method, it will only
select the few values at the front of the shuffled array. If the Randmax constant
is too large, then the system is biased heavily toward the last single element in
the shuffled array. Since selecting a Randmax constant that is too small spreads
the bias out on multiple values instead of a single value, it is best to choose a
Randmax constant closer to the minimum. In our methodology, the Randmax

constant is the cumulative sum value in our dataset’s 10th percentile.

Bias. The introduced bias depends on the standard deviation of the sum of
post-activation ML outputs in the dataset. With higher standard deviations, the
Randmax constant will deviate further from the cumulative sum of the network
output, causing larger biases. Unfortunately, this was the typical case for our
target neural networks, so that, combined with the low precision, it set some
of the test set cases to all 0s. Moreover, this approach still incurs smoothing
and long tail biases for small values of Randmax, which causes increased bias for
larger dataset sizes.

Precision and Complexity. This algorithm uses O(n) additions and O(n)
comparisons. Here, the maximum precision required is reduced due to the lack
of multiplication-scaling but is still dependent on the sum of neural network
outputs, which is O(log(n)) bits.

Experimental Characterization As shown in Figure 3b, this method still
encounters many of the same issues reported for the multiplication-scaled cumu-
lative sum method. Moreover, precision is impacted as the vocabulary size grew;
however, there is still room to increase precision at the cost of slowing down
execution time. Our analysis shows that the output of the ML model had high
variability, which caused outputs where the entire vector was discretized to 0s.

5 Our Proposed Approach for Argmax

While argmax can be useful for ML tasks like classification, its deterministic
nature is not very useful for generative AI. Nevertheless, if some randomness can
be added to the output, it is possible to achieve the desired stochastic result.
This is the core idea behind our proposed argmax method, as we also aim to
lower the precision required. Towards that end, our methodology leverages the
argmax tournament method, which can be interpreted as a derivative of batcher
sort.

12 Lars Folkerts and Nektarios Georgios Tsoutsos

(a) Multiplication Cumulative Sum
Divergence

(b) Heuristic Cumulative Sum
Divergence

(c) Random Multiplier Argmax
Divergence

(d) Approximations: Hard Sofmax
and RandMult Method

Fig. 3: Divergence from Plaintext: This figure highlights the constraints im-
posed by our approximation techniques and precision errors. In the case of cumu-
lative sums, precision accumulates, and the enforcement of low precision results
in only several discretized output values. This can also lead to scenarios where
the output vectors ai are rounded to all zeros, which the algorithm interprets as
uniform random selection. On the other hand, the RandMult method exhibits
a greater capacity to accommodate higher precision levels and circumvents the
biases stemming from random number generation, which are problematic in the
cumulative sum approach. However, it’s essential to acknowledge that all these
methods encounter challenges in achieving peak accuracies due to rounding er-
rors in the activation function.

5.1 Random Multiplication Argmax Method

Methodology. In the random multiplication method, multiplying the post-
activation ML outputs with a random vector can be used as the input to the
argmax function. This will generate a different answer everytime, although it
produces some skew for probabilistic selection for the plaintext variant.

Tyche: Encrypted Probabilistic Selection 13

Normalization. The normalization constraint is mitigated when using argmax
methodology. Specifically, we no longer not need to normalize the outputs if we
are only seeking the maximum.

Bias. Unlike the cumulative sum generator, this approach introduces a dis-
tortion that sharpens the probability distribution. More concretely, suppose we
multiply encrypted output distributions {p1, p2} by uniform random variables
{X̂1, X̂2}, respectively. It is important to note that in this context, the variables
p1 and p2 represent “probabilities” but do not necessarily need to be normal-
ized to one. We wish to find the probability that p1 · X̂1 is larger than p2 · X̂2,
represented by

P(D1,2 > 0) = P(p1 · X̂1 − p2 · X̂2 > 0), (1)

where D1,2 = (p1 · X̂1 − p2 · X̂2). To calculate this probability, we can first find
the expected value

E(D1,2) =

∫ 1

0

(p1 · X̂1)dX̂1 −
∫ 1

0

(p2 · X̂2)dX̂2 =
p1 − p2

2
(2)

and variance

V(D1,2) =

∫ 1

0

∫ 1

0

(p1 · X̂1 − p2 · X̂2)
2dX̂1dX̂2 =

2 · p21 + 2 · p22 − 3 · p1 · p2
6

. (3)

With the mean and variance, we can use the normal cumulative distribution
function (cdf) N

(
0−E(D1,2)
V(D1,2)

)
to find the probabilities for different values of p1.

This gets harder to extrapolate with more variables since the probabilities
are not independent, and several constraints between pairs of variables need to
be met (i.e., p1 > p2, p2 > p3, p3 > p1 is a contradiction). During algorithmic
development, we utilize the bayesian form where contradicted states are removed
(the denominator does not sum to 1 when N > 2). Thus, the probability token
k1 is selected given probability p1 is:

ΠN
i=1N

(
0−E(D1,i)
V(D1,i)

)
∑N

j=1 Π
N
i=1,i̸=jN

(
0−E(Dj,i)
V(Dj,i)

) . (4)

To illustrate this skew, Figure 3d shows the boolean case, defined as p1 and
p2 = 1 − p1. The figure shows both the ideal and the distorted probabilities.
A slight distortion makes these variables sharper; however, this works in our
favor as it reintroduces the “S” curve lost through FHE-friendly hard softmax
approximation. This is a surprising result that helps our RandMax algorithm to
cancel out the bias introduced through the activation function approximation and
achieve a result close to plaintext evaluation.

14 Lars Folkerts and Nektarios Georgios Tsoutsos

Fig. 4: Our neural network architechture: We use a simple mult-layer per-
ception (MLP) model with an embedding table of size 10 and a hidden layer
consisting of 100 hidden neurons. We use 3-ngram characters as inputs and the
output is the number of possible tokens (i.e., vocabulary size). This output is fed
through our probabilistic selection methodology to select a generated encrypted
output.

Precision and Complexity. As mentioned in Section 2.3, the computational
complexity of argmax involves O(n) comparisons. The multiplication step adds
O(n) multiplications. The highest value is the maximum value of the neural net-
work output times Randmax bits. Therefore, the precision is O(log(Randmax)+
log(max(v)) bits, as no values are accumulated in the argmax computation.
This is much more scalable than the cumulative sum methods, since max(v) <<
sum(v), and this bitsize does not grow with the vocabulary size.

Experimental Characterization. This method performs significantly better
on larger datasets, which is attributed to the lack of precision bitsize growth;
this allows our methodology to achieve a higher precision overall. Even with
this method’s sharpening bias, the model may still not be able to meet the
steep probabilities expected from the outputs, as seen in Figure 3c. However,
the argmax curve approximates the expected distribution more accurately than
cumulative sum methods and achieves a more accurate result with FHE.

6 Experimental Evaluation

6.1 Description of our Datasets

Our generative language models focused on generating letter tokens. This en-
ables us to implement a small encrypted multilayer perceptron (MLP) network,
illustrated in Figure 4. This network architecture was kept consistent across all
of our datasets and tests to ensure fair comparison of our results. The network
was run encrypted using TFHE, and the results were utilized for our probabilis-
tic selection experiments. Our experiments comprise five different datasets, as
characterized below:

SSA Names Dataset [30]: This dataset comprises 32K of the most common
names taken from ssa.gov for the year 2018. It contains very short phrases (a

Tyche: Encrypted Probabilistic Selection 15

single name), and has much less training data and higher entropy than our other
datasets. This leads to a higher loss score. There are 27 tokens in this dataset,
one for each letter of the English alphabet (all lowercase) and one stop character.

Shakespeare Dataset [29] (Lowercase): This dataset consists of all of the
works of Shakespeare. We modify this dataset to turn all letters to lowercase. In
total, there are 39 tokens in this dataset including the 26 letters of the English
alphabet and miscellaneous punctuation.

Shakespeare Dataset [29] (All Case): This dataset is the same as above
but regular uppercase and lowercase letters are used for 65 tokens in total. Up-
percase letters have a higher level of predictability, leading to lower entropy in
this dataset than its lowercase counterpart.

German Parliament (Lowercase): We created this dataset to test the
scalability of our algorithms. It consists of proceedings of the German parlia-
ment, in the German language. Numbers, umlauts, and characters used in formal
government writing such as “§” and parenthesis expand this lowercase dataset to
74 characters. The German language is more predictable than English for length
3 n-grams [54], which leads to more predictable results and less of a long-tail
effect than the other datasets.

German Parliament (All Case): This dataset is the same as above, but
with 29 extra uppercase characters, bringing the dataset size to 103 tokens.

6.2 Concrete Library for TFHE

For our experiments, we utilized the Concrete library, which implements the
TFHE scheme. While Concrete offers a mature interface and compiler, the cur-
rent version has two major limitations related to parallelism. First, the library
only supports vector-level CPU parallelization using a curated list of numpy
primitives. Outside of these numpy library functions, there is little parallelization
support, and calculations are limited to one CPU core. This includes for-loops
and homomorphic operations not being parallelized, even though there is plenty
of opportunity to do so and has been done in prior work [13, 43, 19].

Second, the Concrete compiler does not scale well when using for-loops, which
must be unrolled and evaluated sequentially. Due to this limitation, our Con-
crete implementation of batchersort was unable to support larger vectors. Con-
sequently, our results are focused on argmax instead of argkmax, as evaluation
of argkmax was not feasible.

6.3 Hardware Platform for Evaluations

For our experimental evaluation we use an r5.24xlarge server on AWS. To ensure
our results are comparable across datasets, we calculate the amortized cost across
10 iterations run in parallel. This allows small vocabulary-size datasets to utilize
all 96 cores during vector operations, ensuring a fair comparison, but only 10
cores were used in the sequential parts of our algorithms.

16 Lars Folkerts and Nektarios Georgios Tsoutsos

Table 1: Timing Results (seconds): In Table 1b, we report how our three
proposed techniques scale with time. The Cumulative Sum methods scale more
rapidly, and seem very dependent on the worst-case CumSum magnitude (labeled
Max CSum). The RandMult method, albeit longer, scales much more linearly
and predictably. In Table 1a, we provide additional context on state-of-the-art
TFHE PPML latencies; these could be the ML architectures that could feed into
our proposed methodologies.

(a) TFHE PPML

Inference Time

MNIST [19] 1 min.
VGG-11 [19] 40 min.
ImageNet [19] 2 hrs.
Attentiona [41] 3 min.

GPT3 [24] 58 daysb

Our MLP 8 min.

(b) Timing Results for our Methodologies

Timing Results
Vocab Max Mult. Heuristic RandMult

Dataset Size CSum CSum CSum Argmax

Names 27 41 102 4.0 156
Low. Shakes. 39 84 265 21.8 224
Shakespeare 65 78 379 107 348
Low. German 74 19 228 119 386

German 103 10 294 151 400
aSingle attention head. For comparison, ChatGPT-3 has 96 attention heads for each
of its 96 layers.
bExtrapolated time based on 109 bootstraps, 200 bootstraps per second.

6.4 Latency Performance

Runtime performance using FHE depends on algorithm complexity and required
precision. In this case, three different factors need to be taken into consideration
for our experiments.

Precision and Dataset Characteristics: The output characteristics of the
dataset play a key role in runtime performance. In particular, Concrete tunes the
TFHE parameters based on the worst-case precision in the plaintext test cases,
and uses these parameters for both evaluation and encryption. For the German
dataset specifically, the sum of the outputs was significantly lower, dropping
the required precision for the cumulative sum operation from 7-bits to 5-bits.
This caused a dramatic decrease in runtime for the multiplication cumulative
sum method, whose biggest limitation was precision constraints. The cumsum
heuristic also benefited from this characteristic, causing a decrease in latency.

Computational Complexity: As the vocabulary size grows, the cumula-
tive sum methods are expected to grow faster than the argmax method due
to the inherent computational and precision-related complexity. However, the
cumulative sum methods are more influenced by the output characteristics of
the dataset, particularly the largest sum of the post-activation ML output vec-
tor across test cases. Randmax growth is much more predictably since it does
not rely on this dependency. Still, looking at how size influences runtime per-
formance, the cumulative sum methods start out really efficient and grow to
increased runtime overheads. Therefore, the randmax algorithm is a better fit as

Tyche: Encrypted Probabilistic Selection 17

Fig. 5: Loss: We compare how our three proposed methods compare with respect
to accuracy. Due to the long tail caused by low precision rounding errors, the
cumulative sum has an increasing loss as the vocabulary size grows. Conversely,
the random multiplier preserves the low model loss as the vocabulary size grows.

dataset sizes grow, and for higher entropy datasets that have many high-valued
outputs.

Parallelism: The cumulative sum methods have the best parallelism; only
FHE-friendly additions are sequential. Conversely, the random multiplication
argmax approach requires comparisons to be run sequentially or using the tour-
nament method. With the current implementation of the Concrete library, which
only performs well on vectorized operations, the random multiplication method
has the lowest CPU resource utilization among our results. Improvements to the
library, such as a built-in argmax function and homomorphic level parallelism,
would further reduce the timing overhead of our methods.

6.5 Model Performance

The cumulative sum methods showed increasing loss with the dataset size, due to
the smoothing effect creating a long tail. Thus, as the dataset grows, more preci-
sion is needed to distinguish between probable and improbable values. There was
also a higher occurrence of all zero values with the German datasets, resulting
from the dataset characteristics and vector size.

The random multiplier argmax method does not suffer from this long tail
limitation and can offer higher precision that does not grow with the vector size,
resulting in better performance from larger datasets. In addition, the random
multiplier dataset is able to support higher input precision, since the max pre-
cision is capped to Randmax · max(hard sigmoid(x) = 1, unlike the cumulative
sum methods that can grow and have a theoretical upper bound equal to the
vocabulary size n.

18 Lars Folkerts and Nektarios Georgios Tsoutsos

7 Discussion of Related Works

To the best of our knowledge, this is the first work to perform probabilistic
selection for language models. To give additional context to our approach, we
look at three categories of related works. The first is encrypted language models,
which gives some context into the orthogonal work and latencies of the upstream
ML algorithms. The second category of related work is enhanced LLMs, which
primarily use forms of obfuscation to hide query data. The final category we com-
pare with are TFHE decision trees, which can be stochastic or even generative
in nature.

7.1 Encrypted Language Models

Zama, the designers of the Concrete library, have developed two text-based mod-
els. The first one involves sentiment analysis classification [42]. Since this is a
classification problem, they do not invoke probabilistic selection, unlike our work,
and they use a simple XGBoost to classify the data. They attempt two method-
ologies for unencrypted text preprocessing, one based on term frequency-inverse
document frequency (tfidf) and a second using the RoBERTa transformer ex-
cluding the final layer.

Zama has also developed a transformer model [41]. Their first implemen-
tation is a single transformer block with a single-head GPT2 variant, where
layers 2 through 11, over 90% of their model, are run in plaintext. Their sec-
ond implementation is a multi-head variant with 12 attention heads. This is still
implemented as a single layer and with lower precision. The embedding table,
layer normalization and probabilistic selection of the words is also performed in
plaintext. This is in contrast to our techniques, which allow running every part
of the generative AI encrypted.

THE-X is another work that attempts to build a homomorphic transformer,
but they remove much of the homomorphic work from the server, including
activations, and instead ask the user perform these in the plaintext domain.
This defeats the purpose of using HE, as MPC would be a better choice if the
client needs to perform serious computations [6].

For MPC language models, which we discuss here for completeness, many
works were recently published that seek to optimize the inference of the BERT-
based language models. Iron [23] was the first work on MPC transformers, able
to achieve inference speeds on RoBERTa in one minute of online computation.
Primer [58] is another work that merges ciphertext operations and achieves a
latency of around 40 seconds. East [17] and Liu [37] both replace standard
functions with MPC-friendly counterparts and achieve similar performance to
Primer. These MPC works all focus on building fast transformers, but none of
them addresses the issue of probabilistic selection. Furthermore, MPC contains
at least two computing parties, compared to the FHE case of a single idle client
outsourcing computation to a single computing server. Therefore, MPC must ei-
ther invoke the user or have two non-colluding parties perform the computation,
which is a different threat model and use case compared to FHE.

Tyche: Encrypted Probabilistic Selection 19

7.2 Privacy of Cloud Language Models

There are several techniques that can be used to assist model privacy. The first
is differential privacy, which consists of obfuscating the inputs of an input query.
For word tokens, this involves processing the text by replacing synonyms and
redacting any sensitive information [5, 53, 36]. However, this technique can harm
accuracy, and while the users’ direct text may be altered, an attacker can still
distill the meaning behind the original query [4].

A second approach entails projecting the inputs into a related subspace. A
common technique includes sending a compressed token embedding instead of
raw words, which is a lower-dimensional version of the inputs [45]. This work
also recommends obfuscation by the rounding of plaintext floating point numbers
(which TFHE is very good at in the encrypted domain). These techniques may
make the input unreadable to a human attacker, but the meaning of these inputs
can still be extracted.

7.3 TFHE Decision Trees

The basic idea behind decision trees is that decisions can be made at each node
until a leaf is reached, and these decisions can be made probabilistically. In the
TFHE scenario, the model owner has a set of weights which they encrypt and
a user sends a set of probabilities. Then, for each branch, the two probabilities
are compared, and the final value can be calculated as

∑N
i=0 Πj:bj∈Path(vi)bj · vi,

where b is a true-false branch decision and v is the leaf value. While these works
do not focus on generative ML, they employ some form of probabilistic selection
that is worth discussing.

Many recent works have promoted decision trees. These include Paul et.
al. [46], which uses TFHE’s programmable bootstrapping feature to make deci-
sions; SortingHat [11], which focuses on transciphering of decision tree inputs;
Probonite [2] which merges decision tree branches in a process they call “blind-
ing”. In addition, Concrete ML [40] has TFHE-encrypted decision tree and ran-
dom forest APIs available.

None of the models above, however, have been adapted for generative mod-
els. They would need to address the challenge of appending the data to the tree
and normalize the probabilities at each branch. This issue has yet to be ad-
dressed for TFHE decision trees, but was a core contribution of our work. This
additional computation would incur high runtime overheads, as well as require
higher amounts of precision.

8 Future Work

This work utilizes the new Concrete THFE-based library, which is still rapidly
evolving. There are several Concrete features that are still under development
that would be of great interest to this work.

20 Lars Folkerts and Nektarios Georgios Tsoutsos

The first is an efficient implementation of the maximum, argmax and argk-
max functions. In our methodology, we were not able to implement state-of-the-
art argkmax techniques due to inefficiencies in the Concrete compiler that led
to days-long compile times. These techniques have been proven in THFE-rust,
but have not migrated to Concrete. The authors of the library confirmed there
are no plans to allow executing code written in TFHE-rust from Concrete, but
they plan to implement the argmin and argmax as part of K-nearest neighbor.1
A better Concrete implementation would speed up our argmax random multi-
plier implementation, while having argkmax available would allow us to explore
additional algorithms in this space.

Second, each TFHE operation, such as a single addition, is a complex lattice-
based computation that can be parallelized. There are many TFHE research
works that accelerate homomorphic operations, such as cuFHE[13], nuFHE [43],
REDcuFHE [19], and ArctyrEX [21] that parallelize the lower level operations
of TFHE on GPUs, but Concrete does not yet offer this functionality. There are
also several works of TFHE hardware accelerators, with MATCHA [27] being the
most recent work in the FPGA/ASIC space. We look forward to obtain a greater
speedup and utilize more CPU bandwidth through this greater parallelization
effort.

9 Concluding Remarks

In this work, we introduce a novel methodology for encrypted probabilistic selec-
tion in TFHE. Our approach, we compare two possible methods, the cumulative
sum and the argmax, and provide three algorithms for probabilistic selection op-
timized for generative language models over encrypted data. Our findings show
that the argmax-based random multiplication method outperforms the cumula-
tive sum methods in terms of loss stability and precision required, despite offering
some bias in the plaintext domain. This result opens new applications into pri-
vate generative ML, and complements much of the existing work on adapting
ML algorithms for TFHE. With many new TFHE developments on the horizon,
this work is among the first address one of the main challenges toward encrypted
generative AI.

References

1. Aharoni, E., Adir, A., Baruch, M., Drucker, N., Ezov, G., Farkash, A., Greenberg,
L., Masalha, R., Moshkowich, G., Murik, D., et al.: Helayers: A tile tensors frame-
work for large neural networks on encrypted data. arXiv preprint arXiv:2011.01805
(2020)

2. Azogagh, S., Delfour, V., Gambs, S., Killijian, M.O.: Probonite: Private one-
branch-only non-interactive decision tree evaluation. In: Proceedings of the 10th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography. pp.
23–33 (2022)

1 Citation to public forum discussion omitted for anonymity of the authors of this
paper.

Tyche: Encrypted Probabilistic Selection 21

3. Benaissa, A., Retiat, B., Cebere, B., Belfedhal, A.E.: Tenseal: A library for
encrypted tensor operations using homomorphic encryption. arXiv preprint
arXiv:2104.03152 (2021)

4. Brown, H., Lee, K., Mireshghallah, F., Shokri, R., Tramèr, F.: What does it mean
for a language model to preserve privacy? In: Proceedings of the 2022 ACM Con-
ference on Fairness, Accountability, and Transparency. pp. 2280–2292 (2022)

5. Carranza, A.G., Farahani, R., Ponomareva, N., Kurakin, A., Jagielski, M., Nasr,
M.: Privacy-preserving recommender systems with synthetic query generation us-
ing differentially private large language models. arXiv preprint arXiv:2305.05973
(2023)

6. Chen, T., Bao, H., Huang, S., Dong, L., Jiao, B., Jiang, D., Zhou, H., Li, J., Wei,
F.: The-x: Privacy-preserving transformer inference with homomorphic encryption.
arXiv preprint arXiv:2206.00216 (2022)

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23.
pp. 409–437. Springer (2017)

8. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

9. Chillotti, I., Joye, M., Ligier, D., Orfila, J.B., Tap, S.: Concrete: Concrete oper-
ates on ciphertexts rapidly by extending tfhe. In: WAHC 2020-8th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography (2020)

10. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Cyber Security Cryptography
and Machine Learning: 5th International Symposium, CSCML 2021, Be’er Sheva,
Israel, July 8–9, 2021, Proceedings 5. pp. 1–19. Springer (2021)

11. Cong, K., Das, D., Park, J., Pereira, H.V.: Sortinghat: Efficient private decision
tree evaluation via homomorphic encryption and transciphering. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
pp. 563–577 (2022)

12. Cong, K., Geelen, R., Kang, J., Park, J.: Efficient and secure k-nn classification
from improved data-oblivious programs and homomorphic encryption. Cryptology
ePrint Archive (2023)

13. Dai, W., Sunar, B.: cuFHE (v1.0). https://github.com/vernamlab/cuFHE (2018)
14. De, S., Bermudez-Edo, M., Xu, H., Cai, Z.: Deep generative models in the industrial

internet of things: a survey. IEEE Transactions on Industrial Informatics 18(9),
5728–5737 (2022)

15. Derose, A.: These companies have banned or limited ChatGPT at work. Morning
Brew (May 2023)

16. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

17. Ding, Y., Guo, H., Guan, Y., Liu, W., Huo, J., Guan, Z., Zhang, X.: East: Ef-
ficient and accurate secure transformer framework for inference. arXiv preprint
arXiv:2308.09923 (2023)

18. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

19. Folkerts, L., Gouert, C., Tsoutsos, N.G.: REDsec: Running Encrypted Discretized
Neural Networks in Seconds. In: Network and Distributed System Security Sym-
posium (NDSS). pp. 1–17 (2023)

22 Lars Folkerts and Nektarios Georgios Tsoutsos

20. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning. pp. 201–210. PMLR
(2016)

21. Gouert, C., Joseph, V., Dalton, S., Augonnet, C., Garland, M., Tsoutsos, N.G.:
Arctyrex: Accelerated encrypted execution of general-purpose applications. arXiv
preprint arXiv:2306.11006 (2023)

22. Grivet Sébert, A., Pinot, R., Zuber, M., Gouy-Pailler, C., Sirdey, R.: Speed: secure,
private, and efficient deep learning. Machine Learning 110, 675–694 (2021)

23. Hao, M., Li, H., Chen, H., Xing, P., Xu, G., Zhang, T.: Iron: Private inference on
transformers. Advances in Neural Information Processing Systems 35, 15718–15731
(2022)

24. Hindi, R.: Making chatgpt encrypted end-to-end (Apr 2023),
https://www.zama.ai/post/chatgpt-privacy-with-homomorphic-encryption

25. Huallpa, J.J., et al.: Exploring the ethical considerations of using chat gpt in uni-
versity education. Periodicals of Engineering and Natural Sciences 11(4), 105–115
(2023)

26. JaxonAI: Companies that have banned ChatGPT (Jun 2023), https://jaxon.ai/list-
of-companies-that-have-banned-chatgpt/

27. Jiang, L., Lou, Q., Joshi, N.: Matcha: A fast and energy-efficient accelerator
for fully homomorphic encryption over the torus. In: Proceedings of the 59th
ACM/IEEE Design Automation Conference. pp. 235–240 (2022)

28. Joye, M.: Tfhe public-key encryption revisited. Cryptology ePrint Archive (2023)
29. Karpathy, A.: char-rnn. https://github.com/karpathy/char-rnn (2015)
30. Karpathy, A.: Makemore Dataset and Network (2022),

https://github.com/karpathy/makemore
31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. Advances in neural information processing systems 25,
1097–1105 (2012)

32. Laine, K.: Simple encrypted arithmetic library 2.3. 1. Microsoft Research
https://www. microsoft. com/en-us/research/uploads/prod/2017/11/sealmanual-
2-3-1. pdf (2017)

33. Lee, C., Min, S., Seo, J., Song, Y.: Faster tfhe bootstrapping with block binary
keys. Cryptology ePrint Archive (2023)

34. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee, J., Yoo,
D., Kim, Y.S., et al.: Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network. IEEE Access 10, 30039–30054 (2022)

35. Lee, J.W., Lee, E., Lee, Y., Kim, Y.S., No, J.S.: High-precision bootstrapping of
rns-ckks homomorphic encryption using optimal minimax polynomial approxima-
tion and inverse sine function. In: Advances in Cryptology–EUROCRYPT 2021:
40th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I 40.
pp. 618–647. Springer (2021)

36. Li, Y., Tan, Z., Liu, Y.: Privacy-preserving prompt tuning for large language model
services. arXiv preprint arXiv:2305.06212 (2023)

37. Liu, X., Liu, Z.: Llms can understand encrypted prompt: Towards privacy-
computing friendly transformers. arXiv preprint arXiv:2305.18396 (2023)

38. Lou, Q., Jiang, L.: SHE: A Fast and Accurate Deep Neural Network for Encrypted
Data. Advances in Neural Information Processing Systems 32, 10035–10043 (2019)

Tyche: Encrypted Probabilistic Selection 23

39. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 1–23. Springer (2010)

40. Meyre, A., Chevallier-Mames, B., Frery, J., Stoian, A., Bredehoft, R., Mon-
tero, L., Kherfallah, C.: Concrete ML: a privacy-preserving machine learn-
ing library using fully homomorphic encryption for data scientists (2022),
https://github.com/zama-ai/concrete-ml

41. Meyre, A., Chevallier-Mames, B., Frery, J., Stoian, A., Bredehoft, R.,
Montero, L., Kherfallah, C.: Secure large language models using fully
homomorphic encryption (fhe). https://github.com/zama-ai/concrete-
ml/blob/release/1.1.x/use_case_examples/llm (2023)

42. Meyre, A., Chevallier-Mames, B., Frery, J., Stoian, A., Bredehoft, R., Montero,
L., Kherfallah, C.: Sentiment analysis with fhe. https //github.com/zama-
ai/concrete-ml/blob/release/1.1.x/use_case_examples/ senti-
ment_analysis_with_transformer/SentimentClassification.ipynb (2023)

43. NuCypher: nuFHE (v0.0.3). https://github.com/nucypher/nufhe (2019)
44. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.:

Conditional image generation with pixelcnn decoders. Advances in neural informa-
tion processing systems 29 (2016)

45. Pan, X., Zhang, M., Ji, S., Yang, M.: Privacy risks of general-purpose language
models. In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 1314–1331.
IEEE (2020)

46. Paul, J., Tan, B.H.M., Veeravalli, B., Aung, K.M.M.: Non-interactive decision trees
and applications with multi-bit tfhe. Algorithms 15(9), 333 (2022)

47. Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R.: Asleep at the key-
board? assessing the security of github copilot’s code contributions. In: 2022 IEEE
Symposium on Security and Privacy (SP). pp. 754–768. IEEE (2022)

48. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training (2018)

49. Ray, P.P.: Chatgpt: A comprehensive review on background, applications, key chal-
lenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-
Physical Systems (2023)

50. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

51. Regev, O.: The learning with errors problem. Invited survey in CCC 7(30), 11
(2010)

52. Sanyal, A., Kusner, M., Gascon, A., Kanade, V.: TAPAS: Tricks to accelerate (en-
crypted) prediction as a service. In: International Conference on Machine Learning.
pp. 4490–4499. PMLR (2018)

53. Shi, W., Cui, A., Li, E., Jia, R., Yu, Z.: Selective differential privacy for language
modeling. arXiv preprint arXiv:2108.12944 (2021)

54. Smith, R.: Distinct word length frequencies: distributions and symbol entropies.
Glottometrics 23 p. 7 (2012)

55. Taylor, T.: The top types of ai-generated content in marketing (Oct
2023), https://blog.hubspot.com/marketing/top-types-of-ai-generated-content-in-
marketing

56. Telford, T., Verma, P.: Employees want ChatGPT at work. Bosses
worry they’ll spill secrets. The Washington Post (Jul 2023),
https://www.washingtonpost.com/business/2023/07/10/chatgpt-safe-company-
work-ban-lawyers-code/

24 Lars Folkerts and Nektarios Georgios Tsoutsos

57. Zama: Concrete: TFHE Compiler that converts python programs into FHE equiv-
alent (2022), https://github.com/zama-ai/concrete

58. Zheng, M., Lou, Q., Jiang, L.: Primer: Fast private transformer inference on en-
crypted data. arXiv preprint arXiv:2303.13679 (2023)

59. Zuber, M., Sirdey, R.: Efficient homomorphic evaluation of k-nn classifiers. Proc.
Priv. Enhancing Technol. 2021(2), 111–129 (2021)

