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Abstract—Fully homomorphic encryption enables arbitrary
computation on encrypted data, but certain applications re-
main prohibitively expensive in the encrypted domain. As a
case in point, comparing two encrypted sets of data is ex-
tremely computationally expensive due to the large number of
comparison operators required. In this work, we propose a
novel methodology for encrypted set similarity inspired by the
MinHash algorithm. Towards that end, introduce an efficient
bitwise Hash function to employ for encrypted set-similarity,
which allows faster evaluation times relative to the standard
Carter-Wegman constructions. Overall, our approach drastically
reduces the number of comparisons required relative to the
baseline approach of directly computing the Jaccard similarity
coefficients, and is inherently parallelizable, allowing for efficient
encrypted computation on multi-CPU and GPU-based cloud
servers. We validate our approach by performing a privacy-
preserving plagiarism detection across encrypted documents.

Index Terms—Encrypted MinHash, Fully homomorphic en-
cryption, privacy-preserving set similarity.

I. INTRODUCTION

With the growth of third-party cloud providers, the privacy
of the outsourced data stored in these servers becomes a big
concern and needs to be promptly addressed. As a motivating
example, a curious cloud provider can plausibly see the data
stored on their servers to support targeted advertisement. Ad-
ditionally, cloud servers have drawn the attention of attackers
because sensitive information from several clients can reside
on the same server. Existing threats such as cache-based side
channel attacks [1], [2], RowHammer attacks, as well as other
DRAM-based attacks [3], [4] can potentially affect and leak
private data on multi-tenant machines, which include most
cloud services today.

One possible way to address this challenge is to use sym-
metric encryption schemes such as AES [5], as these encryp-
tion algorithms can help us secure the sensitive data stored in
a cloud provider’s server [6]. Although symmetric encryption
algorithms like AES provide strong security guarantees and
relatively fast encryption and decryption overheads, they do
not allow computation over encrypted data. Therefore, to apply
meaningful operations on encrypted data that is stored on the
cloud server, we need to retrieve the data from the cloud
provider, decrypt the data, compute on the plaintext, and then
re-encrypt it and upload it back to the cloud service, which is
time-consuming and inefficient.

Fortunately, a more versatile form of cryptography, dubbed
homomorphic encryption (HE), allows us to do computation
directly on encrypted data. More concretely, HE allows a user

to encrypt modular integers, bits, or floating point numbers
and the resulting ciphertexts are malleable by design. For
example, some classical encryption schemes such as the RSA
[7] and Paillier [8] cryptosystems have homomorphic proper-
ties: Paillier offers an additive property where by multiplying
ciphertexts together, one can generate a valid encryption of
the sum (i.e. Enc(x) × Enc(y) = Enc(x + y)). Similarly,
the RSA cryptosystem offers a multiplicative property where
Enc(x)×Enc(y) = Enc(x× y). Even though these proper-
ties can be useful in certain individual situations, non-trivial
algorithms require both addition and multiplication. Notably,
modern HE schemes, called fully homomorphic encryption
(FHE), allow for any arbitrary computation on encrypted data
by supporting both addition and multiplication or a set of
functionally complete Boolean operators.

Even though arbitrary encrypted computation is possible
using this method, some algorithms that require knowledge
of the underlying data, such as many sorting algorithms like
QuickSort, are infeasible or at the least very expensive due to
the termination problem [9], [10]. In particular, the termination
problem states that the computing party (e.g., a cloud server) is
unable to make a branching decision based on encrypted data,
as any information related to the underlying plaintext can not
be deduced without the client’s decryption key (which is not
shared). Likewise, algorithms that rely heavily on computing
comparisons between encrypted values, are largely impractical
due to the computational overhead of approximating or exactly
computing comparison operators in the encrypted domain.

Nevertheless, one of the major challenges in modern
privacy-preserving methods like homomorphic encryption is
the ability to compute similarities between encrypted data
without leaking any information about the underlying plain-
text. In many privacy-aware applications, such as finding sim-
ilar DNA sequences [11], finding similarities over proprietary
or sensitive images [12], as well as detecting plagiarism across
private documents [13], the confidentiality of the plaintext is
a major goal.

A simple solution to finding similarities between two
datasets is to compare each element of the first set with all the
elements of the second set. This approach requires O(n ∗m)
time complexity, where n and m are the sizes of the two
sets. As a result, the computation time will massively increase
when the sets scale to larger sizes. Conversely, locality sen-
sitive hashing (LSH) offers a more efficient, heuristic-based
approach for finding similarities between datasets [14], [15].
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In more details, LSH is a hashing-based technique that can
efficiently approximate the similarity between datasets based
on some metric, such as the Jaccard similarity index [16].
LSH algorithms apply hash functions on the input data so that
similar data points will hash to the same or nearby hash codes
with high probability; this can significantly accelerate the
conputation costs compared to simpler, brute-force methods.
Moreover, LSH algorithms offer high accuracy and high-
performance if parameterized correctly.

In this paper, we adopt the MinHash LSH algorithm [17] to
find similar datasets in a privacy preserving way using FHE.
The MinHash set-similarity algorithm focuses on estimating
the Jaccard similarity index between two sets, and the core
operations required are hash functions and computing the
minimum hash value. The hash functions are required to pro-
vide different mappings over the dataset, while the minimum
operation finds the minimum hash value (i.e., the signature)
of a set. In this approach, we only need to compare the hash
signatures generated for each set instead of comparing all
elements with each other.

The hash function typically used for MinHash is a linear
universal hash function such as the Carter-Wegman (CW) hash
[18]. While this is one of the simplest forms of hashing,
it is very fast compared to other hash functions and offers
sufficiently-random mapping when used in an LSH algorithm.
However, when implementing a universal hash function in the
encrypted domain using Boolean-based FHE, this approach
becomes prohibitively expensive because of the modular re-
ductions in the CW construction, and the need for large multi-
bit arithmetic circuits. Likewise, due to the nature of the
MinHash algorithm, the modular reduction operation is used
extensively. Therefore, to address this challenge and make
MinHash practical in FHE, we introduce a judiciously de-
signed add-rotate-xor (ARX) hash construction that is tailored
for FHE performance. Our key observation is that bitwise
operations can be directly translated to logical gates to be
evaluated efficiently using FHE.

Overall, our contributions can be summarized as follows:

• Design of efficient and accurate hash functions that are
tailored for encrypted evaluation of LSH algorithms.

• A novel methodology for set-similarity in the encrypted
domain using FHE.

• New strategies for efficient and parallelizable comparison
operations with Boolean-based FHE on CPU and GPU
targets.

Roadmap: The rest of the paper is organized as follows:
Section II provides necessary background on FHE and the
MinHash algorithm, while Section III highlights challenges
for implementing MinHash in the encrypted domain. Section
IV presents our proposed methodology and considerations of
implementing MinHash in the encrypted domain, as well as
possible trade-offs for increasing the efficiency and accuracy
of the encrypted set-similarity algorithm, while Section V
discusses our experimental evaluation using plagiarism detec-
tion benchmarks as the target application. Finally, Section VI

discusses relevant related work, and our concluding remarks
are presented in Section VII.

II. BACKGROUND

A. Homomorphic Encryption Primer

An encryption scheme with malleable ciphertexts that en-
able some form of computation directly on ciphertext data
falls under the umbrella of homomorphic encryption. How-
ever, not all homomorphic cryptosystems exhibit the same
properties; the HE schemes can be sub-divided into three
distinct categories that indicate the computational power of
the homomorphism: partial HE (PHE), leveled HE (LHE), and
fully HE (FHE). PHE is the oldest form of HE but is limited
in its computational abilities. In more detail, a PHE scheme
allows for unbounded addition or multiplication, but not both.
This makes it well-suited for specific applications like data
aggregation but is not suitable for complex algorithms like
the set-similarity techniques proposed in this paper.

Unlike PHE, LHE allows for both addition and multi-
plication and is therefore capable of performing arbitrary
computation as these two operations form a functionally
complete set. LHE ciphertexts in all popular schemes, such
as BGV [19] and CKKS [20], take the form of tuples of
high-degree polynomials where each coefficient is an integer
modulo a large composite number (i.e., a product of primes)
called the ciphertext modulus (typically several hundred bits
in length). Notably, the security of LHE schemes typically
relies on the LWE problem [21] or its ring variant [22],
which entails adding a small amount of random noise to the
coefficients of the ciphertext polynomials during encryption.
An important consequence of the presence of noise in the
ciphertexts is that the magnitude of the noise grows as the
ciphertexts are computed upon; in simple terms, the noise
increases slightly when adding ciphertexts, and significantly
when multiplying ciphertexts. If the computation requires
many subsequent multiplications to be computed over ci-
phertext data, the noise will start to corrupt the underlying
message with high probability, and the final decrypted result
will be non-deterministic. Luckily, a noise mitigation measure
referred to as modulus switching can reduce the magnitude
of the accumulated noise after multiplication by removing an
underlying prime from the (composite) ciphertext modulus.
This strategy also decreases the size of the ciphertexts as
the coefficients become smaller, so the latency of the HE
arithmetic decreases as well. However, modulus switching can
only be done a finite number of times, as one will eventually
run out of primes to remove from the composite modulus. The
only way to support additional modulus switching is to choose
a larger initial coefficient size for the ciphertext polynomials,
which has a negative impact on security and must be balanced
by increasing the polynomial degree. This approach, however,
is not scalable for very deep circuits as the required parameters
result in enormous ciphertexts and very expensive addition and
multiplication operations.

FHE solves this scalability problem and is the most powerful
form of HE in terms of computational abilities: FHE schemes

2



allow for unlimited operations on ciphertext data for a fixed
parameter set. This power comes from a powerful noise
mitigation technique called bootstrapping that can be invoked
an infinite number of times (unlike modulus switching) [23]. In
particular, any LHE scheme can be transformed into an FHE
scheme through the introduction of this mechanism. Never-
theless, bootstrapping incurs a large computational overhead
with respect to other HE operations and constitutes the core
bottleneck of FHE evaluation. For instance, for the BGV and
CKKS cryptosystems, a single bootstrapping operation can
take several seconds to several minutes on a CPU, depending
on the choice of parameters [24]. The FHEW cryptosystem
[25] was introduced to address the latency problems in boot-
strapping and was the first Boolean FHE scheme. This class of
FHE schemes encrypt individual bits, as opposed to integers
or floating point numbers, and allow for the evaluation of
encrypted logic gate operations. The bootstrapping procedure
in FHEW can be evaluated in less than a second on a
CPU and serves a key computational role in the evaluation
of each logic gate, so it must be invoked for each gate
operation. Likewise, the CGGI cryptosystem [26] builds upon
FHEW and is capable of achieving even faster bootstrapping
speeds of less than 10 milliseconds per bootstrap on a CPU.
Additionally, it incorporates an encrypted multiplexer gate that
can obliviously choose between two encrypted bits based on
an encrypted select bit; this functionality is incredibly useful
for applications that require comparisons over encrypted data,
like the encrypted MinHash algorithm proposed in this work.
For these reasons, we opt to utilize the CGGI cryptosystem in
this work.

B. Locality-sensitive Hashing

The premise of locality-sensitive hashing (LSH) is that
similar items tend to have the same or nearby hash values
with high probability. When the size of the data is large,
the complexity of finding similar items using brute force
methods (i.e., comparing all entities one by one) becomes
impractical. LSH reduces the complexity by using special
hash functions that map similar items to the same “bucket”.
Therefore, instead of comparing the items directly, one can
compare the hash values, and items that have similar hash
values are considered similar. Typical LSH algorithms are able
to compute the similarity of two sets using metrics, such as
the Jaccard similarity of these sets. Specifically, the Jaccard
similarity J between two sets A and B is defined as:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

By definition, we note that 0 ≤ J(A,B) ≤ 1 for any A and
B, and in this paper, we define A and B to be the set of
positive integers. One consideration about Jaccard similarity
is its inability to reflect the frequency of elements in its
similarity computation due to the nature of the sets. However,
in most applications, like plagiarism detection demonstrated
in this work, the frequency does not impact the results [27];
for example, even one sentence being similar should warrant

flagging the document as plagiarized. For cases where the
application needs to reflect the frequency of each element, the
Cosine similarity is an alternative option [28], [29]. Morover, a
second consideration about Jaccard similarity is its scalability
in terms of time and space required as the size and number of
the datasets increases.

This challenge is addressed by MinHash, which is a proba-
bilistic algorithm that relies on special hash functions to com-
pute signatures for each set and then compares them to assess
the level of similarity between the two sets. Notably, MinHash
is a high-accuracy estimation of Jaccard similarity, so instead
of using the Jaccard function directly to find similarity between
each pair of data sets, MinHash generates hash signatures for
each set and then compare the signatures pair-wise to find
similar datasets. Therefore, even if the size and number of the
datasets grows, MinHash becomes increasingly more efficient
than the Jaccard similarity.

Minhash has two major components: the computation of
primitive hash functions (used to generate mappings of the
input set), and finding the minimum hash value of each hash
function by comparing all generated hash values. We remark
that in our implementation of the MinHash algorithm, instead
of storing each hash digest and sorting a list of digests to find
the minimum, we generate each digest on the fly and compare
hash values as we go and always save the minimum value. The
MinHash algorithm that computes hash signatures for each set
is presented in Algorithm 1:

Algorithm 1 MinHash Algorithm
Input: List of sets S; Number of hash functions k
Output: List of MinHash signatures for each set

1: procedure MINHASH(S, k)
2: Initialize matrix M of size k × |S| to ∞
3: for i← 1 to k do
4: for each set s in S do
5: for each element x in s do
6: hashV alue← hashi(x)
7: M [i, s]← min(M [i, s], hashV alue))

8: return M

In sum, Algorithm 1 uses k different hash functions and
a list of sets S. For each set s ∈ S, it computes a list of
hash signatures of length k, stores them in matrix M , and
returns it. Now, to estimate the similarity between two sets,
we need to compare the signatures of the two sets; the number
of equal signatures divided by the number of hashes constitutes
the final similarity result. If the hash functions chosen have
low collision probabilities and k is sufficiently large, then
our output will be an accurate approximation of the exact
Jaccard similarity of the two sets [30]. The time complexity of
generating hash signatures for a set of size n and k different
hash functions is O(k · n). Then to compare the two sets we
only compare the hash signatures which will be of complexity
O(k). In almost all cases, the number of hash functions k
will be small so that the complexity of the comparison of the
MinHash signatures of two sets will be close to constant time.
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Conversely, the time complexity of the Jaccard similarity of
two sets with sizes n and m when implemented efficiently is
O(min(n,m)). Thus, if we only have one pair of datasets,
the Jaccard similarity will likely be faster, but when scaling to
thousands or millions of pairs, then MinHash has a significant
performance advantage. This is because MinHash generates
the hash signatures for each dataset only once, and reuses those
signatures to find similarity between each pair of datasets in
roughly constant time. Conversely, Jaccard similarity requires
linear time to compute the similarity between a pair of sets, so
as the number of pairs grows, Jaccard becomes very expensive.

C. Threat Model

In this work, we assume an honest but curious cloud
service provider that is incentivized to view sensitive data
uploaded by a client, but will not deviate in any way from
the protocol (i.e., the prescribed MinHash algorithm). We
remark that a malicious cloud would also be incapable of
accessing the underlying plaintext data of the ciphertexts
(due to FHE guarantees), but could return incorrect results
to the client by deviating from the protocol, so this is not
considered in our case. From a confidentiality perspective, the
only information the computing party can gather is the size
of the underlying plaintext since each ciphertext encrypts a
single bit of information. Additionally, our underlying FHE
toolchain uses the CGGI scheme [26] to securely evaluate
Boolean circuits homomorphically; the security of the CGGI
scheme is based on the learning with errors (LWE) problem
[21], which is an NP-hard lattice problem. Overall, our threat
model is stronger than approaches involving more than one
servers (e.g., secure multiparty computation), where colluding
servers could potentially leak sensitive data.

III. PRIVACY-PRESERVING SET SIMILARITY WITH
MINHASH

Adopting MinHash in the encrypted domain comes with a
set of challenges that need to be addressed. As mentioned
earlier, the two core components of MinHash are hash func-
tions and finding the minimum hash value for each function.
Thus, to run MinHash homomorphically, we need to be able
to compute the hash functions and find the minimum values
in the encrypted domain. Another challenge is defining size
of the input datasets, which cannot change dynamically due
to the nature of underlying Boolean FHE circuits, which
are synthesized using logic synthesis frameworks to leverage
their rigorous logic optimizations. Therefore, the size of each
set must be initialized at compile time, resulting in multiple
circuits for evaluating sets with different sizes.

A general methodology for implementing MinHash in the
encrypted domain is illustrated in Figure 1. As discussed ear-
lier, the input can be any type of data that can be interpreted as
sets, such as images, documents, and DNA samples. Since the
MinHash algorithm operates on sets of integers as input, the
data must be processed and encoded accordingly (our encoding
process for documents is elaborated in Section 5). After the
input pre-processing phase, the encoded sets are processed by

our proposed framework that implements MinHash in FHE
and generates equivalent homomorphic programs, which take
the form of Boolean circuits due to our use of the CGGI
cryptosystem [26]. As elaborated in the next subsections,
we employ the add-rotate-xor (ARX) and the Carter-Wegman
hash constructions homomorphically, along with efficient FHE
comparison modules that process all encrypted hash values
and return the minimum hash values without leaking any
information about the underlying plaintext. Subsequently, our
homomorphic programs (i.e., hashes, comparators) and the
encrypted user data are sent to the cloud for homomorphic
evaluation and the encrypted results will be sent back to the
user for final decryption.

A. LSH over Encrypted Data

As mentioned earlier, one key motivation for focusing on
locality sensitive hashing algorithms, like MinHash, is the
efficiency and scalability limitations of precise approaches
like Jaccard similarity. In particular, if n and m are the
sizes of the input datasets, the time complexity of computing
the Jaccard similarity efficiently is O(min(n,m)), which is
further exaggerated when evaluated in the encrypted domain.
Moreover, Jaccard similarity in FHE requires dynamic data
structures, which cannot be implemented efficiently in FHE,
while the corresponding Boolean circuits cannot be easily
synthesized and optimized by automated logic tools. Even
though a look-up operation is possible to implement in FHE,
this incurs linear time complexity, so that the only way to
compute the encrypted Jaccard similarity incurs the naive
O(n · m) complexity, where each element of the first set is
compared with all the elements of the second set. Conversely,
MinHash is significantly more efficient and decreases the
computational effort in the encrypted domain.

Since the FHE programming model of CGGI expresses
algorithms as Boolean circuits (with FHE logic gates), we
can leverage electronic design automation (EDA) techniques
to generate and optimize the gate netlists. In our methodology,
we construct the FHE-friendly MinHash algorithm in C++
and leverage the Google XLS compiler [31] to generate a
Verilog program. Next, the XLS Verilog code is optimized
by the Yosys RTL synthesis suite [32] and serves as input
to the HELM framework that generates an optimized fully
homomorphic circuit [33]. The encrypted programs (along
with the FHE-protected datasets of the client) are uploaded to
a cloud server that employs HELM’s FHE evaluation engine,
so that all computations involving the sensitive datasets are
end-to-end encrypted and the cloud service has no knowledge
of the underlying plaintext. As soon as the encrypted result is
computed and returned, the client can decrypt it using their
secret key.

B. Choice of Hash Functions

The hash functions used by MinHash are needed to generate
different mappings of the input datasets to compute their
unique signatures. In this work, we employ two universal
hashes: the first is a Carter-Wegman (CW) construction, while
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Fig. 1. Framework Overview: The user encodes data into sets, encrypts them, and then sends them to the cloud, which can run MinHash in the encrypted
domain with a CW or ARX hash. Finally, the encrypted set similarity measure is returned to the user for decryption.

the second is an add-rotate-xor (ARX) construction. In more
details, the CW universal hash of input x is defined as:

h(x) = (ax+ b) mod p, (2)

where p is a sufficiently large prime number, a, b ∈ Zp are
parameters, and Zp is a finite group based on prime p.

The standard CW construction offers a simple design, low
collision probability that allows generating unique digests
over the input x, and can be implemented in FHE since all
operations of Eq. 2 can be directly translated into Boolean
circuits. Nevertheless, our analysis shows that generating a
homomorphic program from the CW construction results in
significantly oversized sub-circuits due to the inclusion of the
modular reduction operator that grows quickly with the word
size. Therefore, to minimize the size of the generated Boolean
circuits for homomorphic evaluation (and thus improve FHE
run-time performance), we also introduce an ARX-based hash
design, where modular reductions can be replaced with an
AND operation. In this case, bitwise operators can be directly
implemented as a Boolean circuit in the CGGI cryptosystem,
which makes the construction very efficient. Therefore, our
ARX-based universal hash is defined as follows:

h(x) = (x+ b) & p, (3)

where b is a constant parameter and p is our masking value,
which is not necessarily a prime. In more details, our ARX
construction adds the input to the constant parameter b then the
AND operator approximates the functionality of the modular
reduction in the CW hash, while limiting the size of the
output. Next, we need to parameterize the ARX so that
it generates a randomly-looking mapping for each input x,
while maintaining efficiency. Towards that, our masking value
follows the form p = 2d− 1, where d is the number of bits in
the output digest; this way, each bit of p is set to 1. Note that
p does not have to be a prime (unlike the CW hash), while
any bits of p that are set to 0 will skew the output digests to a
smaller range, which will increase the probability of collisions;
thus the form p = 2d−1 is an optimal choice. Naturally, if the
(x+ b) intermediate value exceeds p in Eq. 3, the & operator
will ensure that output is at most d bits.

In effect, our proposed ARX construction is applying a
rotation on the input x, and the length of this rotation depends
on the value of parameter b, which is visualized in the example
of Figure 4. In the simplest case, if we have an input set
{1, 2, 3, 4}, b = 1 and p = 15, then our ARX hash will
return {2, 3, 4, 5}; here, our minimum hash value is 2, which
corresponds to the first element in our input set. However, if
we set b = 13, then the resulting digests will be {14, 15, 0, 1},
where the minimum hash value is 0 corresponding to the third
element in our input set. Therefore, based on our b parameter
values, a random element will be mapped to the minimum
hash value. which means that if a different dataset inputs the
same element at that index, then their minimum hashes can
become equal. At the same time, care must be taken on how
the b parameters are chosen while creating a family of ARX
hashes: if all b parameters are small integers and none of the
(x+ b) values exceed p, then the minimum hash will always
correspond to the minimum value in the input set. In this case,
if only the minimum values are equal between two sets, the
ARX-based MinHash will falsely indicate that the whole sets
are equal. To avoid issue, we choose our b parameter to be in
the range [p/2, 3p/2], so that a broad range of inputs saturate
(x + b) values and the same minimum element will not be
chosen multiple times. Choosing b parameter values larger than
3p/2 is redundant because there is a maximum of p different
digests for each input x.

C. Verification of our ARX Construction

The ARX universal hash introduced in Eq. 3 is a simple,
yet surprisingly powerful construction that enables an FHE-
friendly MinHash implementation. To further verify the ef-
fectiveness of the ARX construction for LSH, we empirically
confirm that its impact on the accuracy of the set-similarity is
minimal, compared to the CW-based MinHash and Jaccard-
based LSH. Our empirical analysis is based on an input
text document and we generate 100 different variants of the
document for set similarity. Each document is then converted
to a set of integers using t-shingling [34]. In particular, our
t-shingling technique converts every substring of size t of the
input text to a 32-bit integer token by applying Python’s built-
in hash reduced to modulus 232. In our analysis, we also
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Fig. 2. Visual example of how the ARX hash maps inputs to digests. Different
b parameters result in a different rotations over the input set, which means
that a different element of the input set will correspond to the minimum hash
value.

opt for a large modulus p for both the ARX and the CW
construction, so that it becomes very unlikely for two 32-
bit tokens to map to the same hash digest, and we compare
MinHash (Alg. 1) based on the CW and ARX hashes (Eqs. 2
and 3). Specifically, the masking value for the ARX-MinHash
is p = 232 − 1, and the reduction value for the CW-MinHash
is prime p = 232+15. We then compute the average MinHash
accuracy across one hundred different input pairs and compare
it with the Jaccard similarity. Our findings indicate that the
average accuracy of ARX-MinHash and CW-MinHash is very
close (within 5% on average) to the result of the exact Jaccard
similarity across different input sets. Overall, our empirical
analysis shows that our ARX hash construction is a viable
alternative to the CW hash, and closely approximates the
Jaccard similarity.

D. Computing the Minimum of a Set of Hash Digests

In MinHash, we need to return the smallest value in a
set of digests as a signature, for each one of the k hash
functions and for each input data set. Therefore, to find
the minimum hash we essentially need to compare all hash
values; however, comparisons in the encrypted domain are
a challenge, since the computing party can not access any
information about the underlying plaintext. Therefore, making
a run-time decision based on the results of a comparison is
impossible. Fortunately, it is certainly possible to multiplex
two encrypted values with an encrypted select bit (in this
case, the result of the comparison). Therefore, in the CGGI
cryptosystem, our observation is that we address this challenge
by translating the comparison operation directly into a Boolean
circuit and using the encrypted output of the comparison as
the select signals of a series of encrypted multiplexers (which
are natively supported by CGGI). As this circuit is non-trivial
and quite large relative to simple bitwise operations, it is
important to apply rigorous circuit-level optimizations during
an RTL synthesis step, to reduce the overall circuit size as this
constitutes a key bottleneck of the entire MinHash evaluation.
Indeed, a key motivation for adopting the MinHash algorithm
in the first place is to reduce the total number of comparison
operations to compute the set similarity. In the naive approach,

set similarity requires N × M comparisons where N and
M are the sizes of the two sets, while MinHash requires
k comparisons where k is the number of hash functions
employed (Alg. 1).

E. Input Size Considerations

Another major concern while evaluating encrypted data
homomorphically is that the size of the input data should not
be dynamic, to allow synthesizing an efficient combinational
netlist that is compatible with FHE. This means that the
homomorphic program should not create and evaluate an array
of data at run-time, if the input size is unknown beforehand.
Fortunately, in our FHE framework, we can generate multiple
variants of the homomorphic program, for inputs of different
sizes. At the same time, the input size cannot be arbitrarily
large, as the Google-XLS framework that we employ for HLS
has an upper bound on the number of loop iterations that can
be unrolled for synthesis. Likewise, performing logic optimiza-
tions with the Yosys synthesis suite is resource-intensive as the
circuit size increases. Nevertheless, we remark that both HLS
and RTL synthesis overheads only constitute a one-time cost;
the resulting circuit can be evaluated an unlimited number of
times on different input values.

IV. OUR MINHASH METHODOLOGY FOR FHE

In this paper, we evaluate MinHash homomorphically by
adopting an FHE-based framework (HELM), along with two
EDA frameworks (Google-XLS and Yosys). The high-level
steps outlining our methodology for running MinHash homo-
morphically are as follows:

• Expressing the MinHash algorithm in C++,
• Translating the C++ program to a Verilog program using

Google-XLS,
• Using the Yosys library to synthesize the Verilog program

into an FHE-compatible netlist,
• Processing the generated netlists with HELM to create

and run the homomorphic program with CGGI.

A. Minhash in C++

The MinHash algorithm must be implemented in a way that
can be converted to an equivalent synthesizable combinational
Verilog program in order to render a Boolean circuit that can
be executed with FHE. As discussed, the input given to the
program must have static size; therefore, the MinHash algo-
rithm of Alg. 1 cannot be directly utilized for homomorphic
evaluation as the input to that function is dynamic. To address
this challenge, we need to define all variables and inputs
as static. As a result, the bitsize of variables S, k, M and
hashV alue need to be fixed.

In more details, we define a function called MinHash that
takes as input two equal, constant-sized sets S1 and S2. We
remark that the user doesn’t necessarily need to choose two
identically sized sets, but we opt for this approach without
loss of generality. M is encoded as two signature arrays sig1
and sig2 of constant size k, which are initialized with zero,
while the local variable k is a constant integer. The minimum
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value of each hash function for set S1 is stored in sig1 and
for set S2 is stored in sig2. Next, the program compares the
two signature arrays of constant size k, so that the number of
equal signatures of the two sets is returned as the MihHash
result. The program also stores the minimum value of the hash
function for each set in the respective signature array, while the
hashi operation is initialized with either the prime modulus
(CW case) or the masking value (ARX case). Next, we discuss
the implementations of the two hash families employed in our
MinHash framework.

1) Carter-Wegman Hash: The Carter-Wegman universal
hash is the standard function used traditionally by MinHash for
most applications. As mentioned earlier, the (unencrypted) CW
hash is efficient and can provide randomly-looking mappings
with a low probability of collisions. While this hash is a good
candidate for MinHash over plaintext data, in the encrypted
domain the CW hash becomes a major bottleneck. Specifically,
a large part of the resulting Boolean circuit is allocated to
the modular reduction to prime p, which creates big sub-
circuits that make evaluating the overall CW hash in FHE
very slow. Moverover, generating these circuits for each loop
iteration of each set and hash function further exaggerates the
problem. Nevertheless, to adopt the CW hash for our encrypted
MinHash, we store the different a values and b values (for each
CW variant) in two local arrays of constant size k, while the
prime number p is fixed. This way we can directly implement
the hash with simple arithmetic operators in C++ based on
Eq. 2.

2) ARX Hash: An add-rotate-xor hash function is a more
efficient alternative to the CW hash for implementing MinHash
in CGGI, which natively supports Boolean operations over
ciphertexts. As the operations used in the ARX hash directly
translate to Boolean gates for encrypted evaluation, this hash
can be evaluated many times much faster than the CW hash, as
we report in our experiments. Like the CW case, we store the
different b values in a local array, and fix the masking value
p based on the form 2d− 1. Using the definition of Eq. 3, we
implement the ARX hash using the addition and & operations
of C++.

An important consideration in optimizing the runtime of
the MinHash algorithm in the encrypted domain is to use the
smallest wordsize necessary to represent the input data and
intermediate computations. For our experimental evaluation in
FHE, we use a word-size of 16 bits, which strikes a balance
between latency and precision. Additionally, the hash function
parameters are set in a way that satisfies the hash constraints
mentioned before. A further discussion about our setup is
provided in our experimental evaluation.

B. Converting C++ to Verilog Using Google-XLS

The next step in our methodology is to convert the high-
level C++ code into a Verilog module so that the circuit
can be run homomorphically with CGGI. Notably, for certain
application types, writing Verilog by hand can be tedious and
error-prone, particularly when working with relatively large
arrays. As a result, we use High-Level Synthesis (HLS) to

automatically generate synthesizable Verilog code based on
the programmer’s intent expressed as a C++ program. An
automated process like this allows us to rapidly generate and
compare multiple implementations of MinHash for different
hash functions and input sizes in a matter of seconds. One
potential limitation of HLS is that there are constraints on
the supported high-level programming language operations
and some of their constructs are not synthesizable; for ex-
ample, pointers and dynamic memory allocation in C++ are
not supported by HLS tools. Another possible limitation is
that HLS might generate sub-optimal Verilog (compared to
hand-optimized Verilog); we remark that the rigorous logic
optimizations performed during the subsequent RTL synthesis
step result in efficient circuits nonetheless.

While there are multiple HLS tools that can accomplish
this task, we opted for the Google-XLS [31] framework due
to its popularity and the fact that its open-source. Additionally,
it has seen use in the FHE literature already, as it serves as
a plug-in for the Google Transpiler framework [35]. To use
Google-XLS, we annotate our MinHash function in C++ with
simple pragmas that indicate what loops to unroll as well as
which function is the top-level module.

C. Logic Synthesis Using Yosys

The Verilog code generated from the HLS tool cannot be
directly used for homomorphic evaluation as it only describes
the behavior of the circuit and does not indicate the particular
logic gates needed to evaluate the algorithm. Therefore, struc-
tural Verilog with a gate-level abstraction is suitable for the
Boolean-based programming model of CGGI. Towards that
end, we employ the logic synthesis functionality of Yosys
[32], which is an automated toolchain that converts high-level
hardware description language code such as behavioral Verilog
to gate-level netlists. Concurrently, Yosys also performs logic
optimizations that aim to reduce the total number of gates in
the circuit. In conclusion, the netlists generated from Yosys
will serve as a public input for FHE computation (i.e., the
circuit to be evaluated).

D. Generating Homomorphic Programs Using HELM

To generate and run the final homomorphic programs, we
use an open-source framework called HELM [33], which uses
the CGGI scheme and serves as an execution environment
to run netlists on parallel devices in the encrypted domain.
HELM starts by finding all connections between each gate
and cells in the netlists and maps the gates described in the
netlist to FHE equivalent computations. It also incorporates
a scheduler that identifies gates that can be executed concur-
rently, which are flagged for parallel execution.

After generating the homomorphic programs, we process
our raw inputs (i.e., user data), encrypt them, and feed them
to the input wires of the FHE circuits. The circuits can then
be evaluated by a third-party cloud without gaining knowledge
about the underlying data. Then, after the encrypted computa-
tion, the cloud will return the encrypted similarity result which
is an integer between 0 and k. Lastly, the user can decrypt
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and see the result of the similarity between the provided sets.
Note that we can generate multiple homomorphic programs for
datasets of different sizes, and once we have our homomorphic
circuit of a certain size, we can feed any two encrypted datasets
of that size to it for encrypted evaluation and receive the
encrypted result.

V. EXPERIMENTAL EVALUATION

In this section, we provide a comprehensive evaluation of
our proposed framework by comparing the performance of the
ARX and the CW hash families in the MinHash algorithm. For
good measure, we also provide a naive method of set similarity
with O(n2) time complexity (assuming both sets are of size n)
which compares each element of the first set with each element
of the second set. We perform all CPU-based experiments on
an r5.12xlarge AWS EC2 instance, which has 48 vCPUs
and 384 GB of RAM. We remark that our underlying runtime
library (HELM) parallelizes the homomorphic circuit across
all available CPU threads. Additionally, we further utilize
an NVIDIA A100 GPU with 80 GB of memory for GPU-
based experiments. Lastly, we adopt the default cryptographic
parameters for CGGI that are supported by HELM, which
correspond to approximately 128 bits of security.

A. Methodology for Plagiarism Detection

By implementing MinHash in FHE, we can efficiently
compute the similarity between input datasets that should
remain private. For our experiments, we employ our encrypted
MinHash to detect plagiarism between private text documents.
The two main steps to achieve this are to encode the documents
so they can serve as input to the homomorphic circuits
and parameterize the homomorphic circuits for the specific
document size.

1) Preprocessing/Encoding Input Data: First, the docu-
ments must be encoded so that the contents of each one map
to a set of integers. The size of the set and the range of each
element in the set are must be compatible with a homomorphic
circuit of matching input size. We also note that there are many
ways to encode text into a set of integer tokens, and in this
work we opt to use t-shingling [34]. Using this approach, we
hash each substring of length t = 9 into an integer token,
resulting in a set of hash digests. The size of the hash sets are
directly correlated with the number of substrings of length t.
The range of each integer token depends on the hash utilized
in the FHE circuit (i.e., ARX or CW). We note that each hash
digest is reduced by the prime modulus p when using the CW
hash function in Eq. 2, or the masking value p when using the
ARX hash function in Eq. 3. Finally, the preprocessing phase
is done in plaintext and when the documents are encoded to
sets of integer tokens, we encrypt them and feed them to the
homomorphic circuits for evaluation.

2) Parameterizing Homomorphic Circuits: Next we need
to set the constant parameters for our homomorphic programs
in order to run the encrypted sets correctly. Specifically, the
parameters required for the MinHash circuits include the
number of hashes k (in this work we use k = 5 unless noted

otherwise), the bitsize of our variables and the parameters of
our hash functions. As soon as the number of hash functions
k is fixed, we can then select the parameters for each hash
to generate k unique hash functions. Regarding our C++
implementation, we use the 16-bit unsigned short type
for the elements of each input set, as well as other intermediate
variables.

For CW hash functions, the required parameters are the
coefficients a and b and the prime modulus p, as given
in Eq. 2. The choice of p must strike a balance between
collision probability and computational overhead; a large p
will yield a lower probability of collisions in the reduced hash
values, but will result in exponentially larger computational
overheads in the encrypted domain as the supported word
size must be increased to accomodate values modulo p. We
chose p = 16381 as our modulus, which allows for 16-bit
word sizes and results in worst-case accuracy degradations of
approximately 10% (relative to the exact Jaccard similarity).
Regarding the a and the b parameters, we chose them in a
way so that the term ax+ b exceeds the modulus p with high
probability, but it is smaller than the value 65535, which is
the maximum value supported by our 16-bit wordsize. This
way, all intermediate values (i.e., ax+b) will very likely wrap
around p and the hash functions can work as intended.

For the ARX hash functions, we use Eq. 3, where the
required parameters are the coefficient b and the masking value
p, which acts like the reduction modulus in the CW hash. The
p value, unlike in the CW hash, should be of form 2n− 1, so
we choose the value p = 4095 as our reduction value. The b
values are chosen to be close to the masking value, mostly in
the range [p/2, 3p/2]. This way, just like the CW hash, most
of the (x + b) values will exceed the masking value so the
hash function works properly.

Now that we have successfully encoded our raw input
data and parameterized our homomorphic programs, we can
encrypt the encoded data sets and correctly evaluate them.
Finally, we remark that the “naive” circuits discussed later in
our experiments implement an exhaustive approach to search
all pairs of similar elements, so they require no specific
parameters.

B. Comparing Both MinHash Variants with the Naive Ap-
proach

For each hash family, we create 3 circuits of input sizes 10,
20, and 30. Due to the extreme size increase of the modular
reduction circuits in the CW MinHash circuits, Yosys could
not synthesize circuits corresponding to set sizes of more than
30. On the other hand, the ARX-MinHash circuits were way
smaller than the CW counterparts and Yosys could synthesize
them in a matter of seconds. Figure 3 shows that as the set
size increases, the MinHash-CW circuits increase their runtime
overhead at a faster rate than the MinHash-ARX circuits.
This means that the MinHash algorithm with the ARX hash
function is way more efficient than the standard CW-based
MinHash using Boolean FHE, so that it is more scalable and
can be used with larger sets as inputs and more hash functions.
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Fig. 3. Comparison between the ARX and CW hashes in MinHash.

Due to the graceful scalability of the MinHash-ARX cir-
cuits, we created additional circuits corresponding to set sizes
of 50, 75, and 100 for the ARX variant. Next, we compare our
MinHash-ARX circuits against a “naive” approach to further
motivate the use of MinHash as a viable alternative for set
similarity computation in the encrypted domain. Notably, we
selected the naive method because implementing the Jaccard
similarity from Eq. 1 remains inefficient in the encrypted
domain, as it requires the use of hashset data structures. In
particular, assuming both input datasets are of equal size, the
time complexity of Jaccard similarity when implemented with
hashsets is O(n) where n is the size of the sets. However,
dynamic data structures like hash sets where an operation
such as a “lookup” depends on encrypted data cannot be
implemented efficiently in FHE. That is why we select a naive
O(n2) approach to assess the viability of our framework.

For the naive method, we create circuits of size 10, 20, 30,
50, 75, and 100 to compare with the MinHash-ARX circuits
of identical set sizes. As we can see in Figure 4, at smaller set
sizes the naive method is faster, which is expected. But as the
set size grows, the naive method scales significantly worse than
the MinHash-ARX circuits and it becomes far less efficient.
As mentioned previously, one of the major bottlenecks of
implementing MinHash in FHE is the number of comparisons.
This and the results of Figure 4 shows that MinHash-ARX
performs markedly better than the naive method for moderate
and large set sizes.

C. Time-Accuracy Trade-off

All experiments above were conducted using k = 5 hash
functions for the MinHash circuits. Although five hash func-
tions still give acceptable accuracy in many scenarios, some
applications may require higher accuracy guarantees in the set
similarity measure. As the results of the previous experiments
show, the MinHash-ARX circuits are the fastest and most
scalable. Therefore, we use the MinHash-ARX circuit of input
size 30 and implement it using both 25 and 50 hash functions.
The circuit evaluations are shown in Figure 5, and we observe
that as the number of hashes grows, the runtime increases
linearly. Interestingly, the runtime of the MinHash-CW circuit
of size 30 with five hash functions is around the same as the

MinHash-ARX circuit of size 30 with 25 hash functions. This
further solidifies MinHash-ARX as the superior alternative and
even with an increase in hash functions, it is still viable and
scalable.

D. CPU vs GPU Evaluation Comparison

All experiments were done with both a CPU-based cryp-
tographic backend and a GPU-based backend, which differ
depending on which type of device that is executing the
underlying CGGI homomorphic operations. We observe that
the GPU outperforms the multi-threaded CPU as most FHE
operations are highly parallel in nature and can greatly benefit
from the massive levels of parallelism that GPUs can provide.
However, we observe that the speedup acquired from the GPU
backend is highly dependent on the structure of the circuit
being executed. As a case in point, the naive implementation
depicted in Figure 4 is less than 2× faster when running on
the GPU for all set sizes. This is primarily due to the fact that
the circuit has a very long critical path (with up to several
thousand levels for the largest set size). Additionally, most
of the levels in the circuit are thin and consist of a limited
number of gates, limiting the number of gates that can be
evaluated concurrently. As a result, these circuits can only
achieve modest utilization of the A100 GPU and result in
limited speedups (i.e., < 2×. However, circuits such as the
MinHash-CW variants shown in Figure 3 are very wide due
to the large and wide Boolean subcircuits needed to evaluate
operations such as modular reduction and multiplication. In
these cases, where the levels of the circuit are very wide, we
observe speedups of nearly 3× for the GPU backend versus
the CPU.

VI. RELATED WORKS

Several works have focused on privacy-preserving opera-
tions between sets of data; in this section, we expound upon
works that tackle both private set intersection (PSI) and private
set similarity, which is closest to our work.

A. Private Set Intersection

The problem of private set intersection involves computing
a subset consisting of elements present in two or more private
sets. Kerschbaum [36] introduced a PSI protocol based on
Bloom filters and the BGN homomorphic cryptosystem [37]
and incorporates an additional computing party (independent
from the client and server). Chen et al. [38] introduced a
hash-based protocol tuned for computing the similarity be-
tween a large and small set. The protocol utilizes the BFV
cryptosystem [19] and incorporates a technique to reduce
communication overhead by making the ciphertexts smaller
through modulus switching. A maliciously secure protocol
based on HE was proposed by Jiang et al. [39] that also
incorporates verifiable computation and oblivious pseudo-
random functions. Like the previous work, the authors target
the BFV cryptosystem as the HE backend (particularly the
RNS implementation in the Microsoft SEAL library [40]).
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Additionally, other works have solved this problem using se-
cure multiparty computation. Hazay and Venkitasubramaniam
proposed an approach that mimics a star topology where
every party communicates with a designated party and avoids
the need to perform broadcasts in favor of point-to-point
communications [41]. Falk et al. propose another multi-party
approach based on Bloom filters and is optimized for sets of
unbalanced sizes [42].

Instead of returning the intersection of sets to clients,
our work focuses on computing a similarity measurement
between two sets. Nonetheless, many of these works employ
similar types of mechanisms such as comparisons and hashing.
Compared to the HE-based works, our solution utilizes FHE
instead of LHE and can allow for arbitrary computation after
the set similarity is computed or otherwise used as a building
block of a more complex application. Additionally, the MPC
solutions incur a higher communication overhead relative to
our work in order to perform the computation and have a
weaker threat model in the multi-party setting due to the threat
of colluding parties.

B. Hash-Based Private Set Similarity Measurements

Other works focus on computing a similarity measure in a
fashion similar to the proposed approach. Yan [43] estimates
the Jaccard similarity using differential privacy, while Wong
[44] proposed a private protocol to compute Jaccard similarity
using both differential privacy and homomorphic encryption.
Compared to our work, both of these works are interactive and

require the user to actively participate in the protocol during
computation. Purely FHE-based solutions like ours, only re-
quire the client to only perform encryption, decryption, and
key generation. PrivMin [45] computes a privacy-preserving
MinHash variant to approximate the Jaccard similarity with
differential privacy. However, this work requires a trusted third
party that results in a weaker threat model. Our work assumes
a single semi-honest computing party and the only assumption
we make is that the computing party correctly executes the pre-
scribed encrypted algorithm (which is a realistic assumption
in the context of cloud computing).

Lastly, the EsPRESSo [46] framework introduces two pro-
tocols, one for computing the exact Jaccard similarity and
another that approximates it using MinHash. Both protocols
are based on a custom MPC protocol with two computational
parties. However, the security level of the instantiation of the
scheme is 80 bits, which is lower than our approach that
complies with the standard 128 bits of security.

VII. CONCLUSION

In this paper, we present the MatcHEd framework for en-
crypted set-similarity based on MinHash. We introduce a new
ARX-based hash function to use instead of the standard Carter
and Wegman hash function used in the MinHash algorithm to
improve evaluation speeds by a large margin in Boolean FHE.
Further, we leverage EDA methodologies to synthesize and
optimize our bespoke MinHash variants to allow for efficient
execution in the encrypted domain. Lastly, we evaluate the first
fully homomorphic plagiarism detection application using our
proposed techniques and report that the MinHash variant based
on our proposed ARX hash family significantly outperforms
the standard MinHash algorithm in the encrypted domain
as well as a baseline approach that computes the exact set
similarity.
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